Genetic and chemotherapeutic influences on germline hypermutation

[1]  M. Gymrek,et al.  Patterns of de novo tandem repeat mutations and their role in autism , 2020, Nature.

[2]  M. Stratton,et al.  The mutational landscape of human somatic and germline cells , 2020, Nature.

[3]  Patrick J. Short,et al.  Evidence for 28 genetic disorders discovered by combining healthcare and research data , 2020, Nature.

[4]  Keith W. Muir,et al.  Whole-genome sequencing of patients with rare diseases in a national health system , 2020, Nature.

[5]  A. Monteiro,et al.  Germline variants in cancer genes in high-risk non-BRCA patients from Puerto Rico , 2019, Scientific Reports.

[6]  Janet M Thornton,et al.  VarSite: Disease variants and protein structure , 2019, Protein science : a publication of the Protein Society.

[7]  Lin S. Chen,et al.  Determinants of telomere length across human tissues , 2019, bioRxiv.

[8]  Brent S. Pedersen,et al.  Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation , 2019, eLife.

[9]  Thomas M. Keane,et al.  Similarities and differences in patterns of germline mutation between mice and humans , 2019, Nature Communications.

[10]  W. Amos Flanking heterozygosity influences the relative probability of different base substitutions in humans , 2019, Royal Society Open Science.

[11]  Ken R. Smith,et al.  Germline mutation rates in young adults predict longevity and reproductive lifespan , 2019, Scientific Reports.

[12]  Iñigo Martincorena,et al.  Mutational signatures are jointly shaped by DNA damage and repair , 2019, bioRxiv.

[13]  A. Gonzalez-Perez,et al.  The mutational footprints of cancer therapies , 2019, bioRxiv.

[14]  R. Siebert,et al.  Timing the initiation of multiple myeloma , 2019, Nature Communications.

[15]  J. S. Pedersen,et al.  Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer , 2019, Genome research.

[16]  H. Mitchison,et al.  Opportunities and Challenges for Molecular Understanding of Ciliopathies–The 100,000 Genomes Project , 2019, Front. Genet..

[17]  S. Morganella,et al.  A Compendium of Mutational Signatures of Environmental Agents , 2019, Cell.

[18]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[19]  William J. Astle,et al.  Whole-genome sequencing of rare disease patients in a national healthcare system , 2019, bioRxiv.

[20]  Gregory M. Cooper,et al.  CADD: predicting the deleteriousness of variants throughout the human genome , 2018, Nucleic Acids Res..

[21]  D. Phillips Mutational spectra and mutational signatures: Insights into cancer aetiology and mechanisms of DNA damage and repair , 2018, DNA repair.

[22]  Raymond M. Moore,et al.  Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer , 2018, JAMA.

[23]  Brent S. Pedersen,et al.  Overlooked roles of DNA damage and maternal age in generating human germline mutations , 2018, Proceedings of the National Academy of Sciences.

[24]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[25]  Steven J. M. Jones,et al.  Pathogenic Germline Variants in 10,389 Adult Cancers. , 2018, Cell.

[26]  Hannes P. Eggertsson,et al.  Parental influence on human germline de novo mutations in 1,548 trios from Iceland , 2017, Nature.

[27]  Mi Ni Huang,et al.  In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors , 2017, bioRxiv.

[28]  D. Reich,et al.  Interpreting short tandem repeat variations in humans using mutational constraint , 2016, Nature Genetics.

[29]  A. Shimamura,et al.  ETV6 in hematopoiesis and leukemia predisposition. , 2017, Seminars in hematology.

[30]  T. E. Wilson,et al.  Mechanisms of glycosylase induced genomic instability , 2017, PloS one.

[31]  P. Sullivan,et al.  Common-variant associations with fragile X syndrome , 2017, bioRxiv.

[32]  Klaudia Walter,et al.  An Organismal CNV Mutator Phenotype Restricted to Early Human Development , 2017, Cell.

[33]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[34]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[35]  R. Tremblay,et al.  Paternal Age Explains a Major Portion of De Novo Germline Mutation Rate Variability in Healthy Individuals , 2016, PloS one.

[36]  J. Roach,et al.  Parent-of-origin-specific signatures of de novo mutations , 2016, Nature Genetics.

[37]  Arthur Wuster,et al.  Timing, rates and spectra of human germline mutation , 2015, Nature Genetics.

[38]  Ricardo Villamarín-Salomón,et al.  ClinVar: public archive of interpretations of clinically relevant variants , 2015, Nucleic Acids Res..

[39]  M. Stratton,et al.  Clock-like mutational processes in human somatic cells , 2015, Nature Genetics.

[40]  P. O'Brien,et al.  Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase. , 2015, ACS chemical biology.

[41]  P. Visscher,et al.  Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index , 2015, Nature Genetics.

[42]  S. Wakana,et al.  Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice , 2015, Genome research.

[43]  L. Hurst,et al.  Parent–progeny sequencing indicates higher mutation rates in heterozygotes , 2015, Nature.

[44]  Alejandro Sifrim,et al.  Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data , 2015, The Lancet.

[45]  M. Hurles,et al.  The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline , 2015, Nature Communications.

[46]  Kelley Harris Evidence for recent, population-specific evolution of the human mutation rate , 2015, Proceedings of the National Academy of Sciences.

[47]  G. McVean,et al.  Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications , 2014, Nature Genetics.

[48]  Peter J. Campbell,et al.  Subclonal variant calling with multiple samples and prior knowledge , 2014, Bioinform..

[49]  Arthur Wuster,et al.  DeNovoGear: de novo indel and point mutation discovery and phasing , 2013, Nature Methods.

[50]  L. Aaltonen,et al.  Diagnostic Cancer Genome Sequencing and the Contribution of Germline Variants , 2013, Science.

[51]  M. Stratton,et al.  Deciphering Signatures of Mutational Processes Operative in Human Cancer , 2013, Cell reports.

[52]  S. Steinberg,et al.  Rate of de novo mutations and the importance of father’s age to disease risk , 2012, Nature.

[53]  Swapan Mallick,et al.  A direct characterization of human mutation based on microsatellites , 2012, Nature Genetics.

[54]  M. Stratton,et al.  604 Cancer Genomics, Epigenetics and Genomic Instability. Mutational Processes Shaping the Genomes of Twenty-one Breast Cancers , 2012 .

[55]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[56]  A. Lehmann,et al.  Xeroderma pigmentosum , 2011, Orphanet journal of rare diseases.

[57]  C. Cole,et al.  COSMIC: the catalogue of somatic mutations in cancer , 2011, Genome Biology.

[58]  M. DePristo,et al.  Variation in genome-wide mutation rates within and between human families , 2011, Nature Genetics.

[59]  R. Wood,et al.  DNA polymerases and cancer , 2011, Nature Reviews Cancer.

[60]  P. O'Brien,et al.  Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by human alkyladenine DNA glycosylase. , 2009, Biochemistry.

[61]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[62]  E. Friedberg,et al.  The combined effects of xeroderma pigmentosum C deficiency and mutagens on mutation rates in the mouse germ line. , 2007, Cancer research.

[63]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[64]  W. Edelmann,et al.  Mbd4 inactivation increases C→T transition mutations and promotes gastrointestinal tumor formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  P. Forster,et al.  Natural radioactivity and human mitochondrial DNA mutations , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Joost Bart,et al.  An oncological view on the blood-testis barrier. , 2002, The Lancet. Oncology.

[67]  E. Tawn,et al.  Hereditary Effects of Radiation: UNSCEAR 2001 Report to the General Assembly, with Scientific Annex , 2002 .

[68]  Hui Shen,et al.  Mutation patterns at dinucleotide microsatellite loci in humans. , 2002, American journal of human genetics.

[69]  L. Rasmussen,et al.  Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[70]  A. Jeffreys,et al.  Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism , 1994, Nature Genetics.

[71]  A. Hall,et al.  Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain. , 1988, Cancer research.

[72]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[73]  E. E. Connor,et al.  Effects of substrate specificity on initiating the base excision repair of N-methylpurines by variant human 3-methyladenine DNA glycosylases. , 2005, Chemical research in toxicology.

[74]  P. Shannon,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 Tables S1 to S17 References Dataset S1 Analysis of Genetic Inheritance in a Family Quartet by Whole-genome Sequencing , 2022 .