A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence.

Room temperature (TR) elastic constants and compressive yield strengths of approximately 30 metallic glasses reveal an average shear limit gammaC=0.0267+/-0.0020, where tauY=gamma CG is the maximum resolved shear stress at yielding, and G the shear modulus. The gammaC values for individual glasses are correlated with t=TR/Tg , and gamma C for a single glass follows the same correlation (vs t=T/Tg). A cooperative shear model, inspired by Frenkel's analysis of the shear strength of solids, is proposed. Using a scaling analysis leads to a universal law tauCT/G=gammaC0-gammaC1(t)2/3 for the flow stress at finite T where gammaC0=(0.036+/-0.002) and gammaC1=(0.016+/-0.002).

[1]  Anaël Lemaître,et al.  Universal breakdown of elasticity at the onset of material failure. , 2004, Physical review letters.

[2]  W. Johnson,et al.  Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures , 2003 .

[3]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[4]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  B. Bagley,et al.  Soft Transverse Phonons in a Metallic Glass , 1972 .

[6]  D. Lacks,et al.  Volume dependence of potential energy landscapes in glasses , 1997 .

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  S. Poon,et al.  Fe-based bulk metallic glasses with diameter thickness larger than one centimeter , 2004 .

[9]  W. Johnson,et al.  Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass , 2004 .

[10]  Hugh Alan Bruck,et al.  Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys , 1994 .

[11]  A. Inoue,et al.  Low Temperature Mechanical Properties of Bulk Metallic Glasses , 2000 .

[12]  V. Ocelík,et al.  Low temperature mechanical properties of metallic glasses - Connection with structure , 1997 .

[13]  W. Johnson,et al.  Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X=B,Fe,Cu) alloy systems , 2003 .

[14]  U. Harms,et al.  Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20 , 2003 .

[15]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[16]  A. Argon Plastic deformation in metallic glasses , 1979 .

[17]  W. Johnson,et al.  Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite , 2001 .

[18]  D. Lacks,et al.  Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses , 1999 .

[19]  Weihua Wang,et al.  Soft bulk metallic glasses based on cerium , 2004 .

[20]  J. Schroers,et al.  Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system , 2004 .

[21]  David J Wales,et al.  New results for phase transitions from catastrophe theory. , 2004, The Journal of chemical physics.

[22]  J. Schroers,et al.  Gold based bulk metallic glass , 2005 .

[23]  A. Inoue,et al.  Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region , 2001 .

[24]  G. Ravichandran,et al.  Pressure-dependent flow behavior of Zr_41.2Ti_13.8Cu_12.5Ni_10Be_22.5 bulk metallic glass , 2003 .

[25]  J. Doye,et al.  Saddle Points and Dynamics of Lennard-Jones Clusters, Solids and Supercooled Liquids , 2001, cond-mat/0108310.

[26]  J. Langer,et al.  Dynamics of viscoplastic deformation in amorphous solids , 1997, cond-mat/9712114.

[27]  J. T. Krause,et al.  Elastic constants, hardness and their implications to flow properties of metallic glasses , 1975 .

[28]  J. Frenkel Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper , 1926 .

[29]  P. Gaunt,et al.  Magnetic viscosity in ferromagnets , 1976 .

[30]  D. Wales A Microscopic Basis for the Global Appearance of Energy Landscapes , 2001, Science.

[31]  J. Wittmer,et al.  Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations , 2002, cond-mat/0204258.

[32]  W. Johnson,et al.  Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm , 2004 .

[33]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[34]  A. Argon,et al.  Development of visco-plastic deformation in metallic glasses , 1983 .

[35]  P. Gaunt Ferromagnetic domain wall pinning by a random array of inhomogeneities , 1983 .

[36]  S. Poon,et al.  Fe−Mn−Cr−Mo−(Y,Ln)−C−B (Ln = Lanthanides) bulk metallic glasses as formable amorphous steel alloys , 2004 .

[37]  W. Goddard,et al.  Molecular dynamics study of the binary Cu_(46)Zr_(54) metallic glass motivated by experiments: Glass formation and atomic-level structure , 2005 .

[38]  Jan Schroers,et al.  Ductile bulk metallic glass. , 2004, Physical review letters.

[39]  F. Stillinger,et al.  A Topographic View of Supercooled Liquids and Glass Formation , 1995, Science.

[40]  P. Donovan A yield criterion for Pd40Ni40P20 metallic glass , 1989 .

[41]  Frank H. Stillinger,et al.  Supercooled liquids, glass transitions, and the Kauzmann paradox , 1988 .

[42]  D. Zhao,et al.  Formation and properties of Zr48Nb8Cu14Ni12Be18 bulk metallic glass , 2003 .

[43]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[44]  P. Debenedetti,et al.  Energy landscapes, ideal glasses, and their equation of state , 2002, cond-mat/0212487.

[45]  Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  John W. Hutchinson,et al.  Strain localization in amorphous metals , 1982 .

[47]  W. Johnson,et al.  Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. , 2004, Physical review letters.