A nearly one-and-one-half-dimensional confinement model for field-reversed configurations

A global confinement model is developed for a field‐reversed configuration (FRC) using a quasistatic profile assumption and assuming a realistic two‐dimensional equilibrium. Since the associated computational problem is modest, the model is useful as a fast tool for interpreting experimental results and extracting confinement trends. Its predictions compare well with a fully time‐dependent 1 (1)/(2) ‐dimensional computation. The results are compared with results from a similar previous model that employed a crude ‘‘square‐ends’’ equilibrium. Generic confinement relationships between resistivity and its profile, and the confinement of particles and poloidal flux are found.

[1]  N. A. Krall Damping of lower hybrid waves by low‐frequency drift waves , 1989 .

[2]  N. A. Krall The effect of low-frequency turbulence on flux, particle, and energy confinement in a field-reversed configuration , 1989 .

[3]  P. H. Sakanaka,et al.  Plasma decay in field reversed configurations , 1989 .

[4]  K. Werley,et al.  CFRX, a one-and-a-quarter-dimensional transport code for field-reversed configuration studies , 1989 .

[5]  D. Shumaker Transport simulation of a field-reversed configuration plasma , 1988 .

[6]  K. Werley One‐and‐a‐quarter‐dimensional transport modeling of the field‐reversed configuration , 1987 .

[7]  N. A. Krall Low‐frequency stability for field reversed configuration parameters , 1987 .

[8]  L. Steinhauer Electrostatic confinement in the edge layer of field‐reversed configurations , 1986 .

[9]  S. Hamada A model of equilibrium transport and evolution of field reversed configurations , 1986 .

[10]  W. Armstrong,et al.  Review of the Los Alamos FRX-C Experiment , 1986 .

[11]  E. Caramana The long‐time evolution approximation for a quasi‐one‐dimensional plasma system , 1985 .

[12]  J. Slough,et al.  A model for inferring transport rates from observed confinement times in field‐reversed configurations , 1985 .

[13]  M. Tuszewski,et al.  A zero-dimensional transport model for field-reversed configurations , 1984 .

[14]  R. Milroy,et al.  Particle lifetime scaling in field‐reversed configurations based on lower‐hybrid‐drift resistivity , 1983 .

[15]  R. Milroy,et al.  Poloidal flux loss in a field‐reversed theta pinch , 1982 .

[16]  M. Tuszewski,et al.  Particle transport in field‐reversed configurations , 1982 .

[17]  D. Shumaker,et al.  Numerical simulation of transport in a field-reversed mirror plasma , 1982 .

[18]  W. Armstrong,et al.  Field‐reversed experiments (FRX) on compact toroids , 1981 .

[19]  A. Hoffman,et al.  LINUS cycle calculations including plasma transport and resistive flux loss , 1980 .

[20]  D. Book,et al.  Numerical simulation of the anomalous transport process in radially compressed reversed-field configurations , 1980 .

[21]  P. Liewer,et al.  Sheath broadening by the lower-hybrid-drift instability in post-implosion theta pinches , 1977 .

[22]  Harold Grad,et al.  Classical Diffusion in a Tokomak , 1970 .