Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas

In this work, we examine the validity of several common simplifying assumptions used in numerical neoclassical calculations for nonaxisymmetric plasmas, both by using a new continuum drift-kinetic code and by considering analytic properties of the kinetic equation. First, neoclassical phenomena are computed for the LHD and W7-X stellarators using several versions of the drift-kinetic equation, including the commonly used incompressible-ExB-drift approximation and two other variants, corresponding to different effective particle trajectories. It is found that for electric fields below roughly one third of the resonant value, the different formulations give nearly identical results, demonstrating the incompressible ExB-drift approximation is quite accurate in this regime. However, near the electric field resonance, the models yield substantially different results. We also compare results for various collision operators, including the full linearized Fokker-Planck operator. At low collisionality, the radial transport driven by radial gradients is nearly identical for the different operators, while in other cases it is found to be important that collisions conserve momentum.

[1]  M. Landreman,et al.  Conservation of energy and magnetic moment in neoclassical calculations for optimized stellarators , 2013 .

[2]  P. Helander,et al.  Pfirsch–Schlüter impurity transport in stellarators , 2010 .

[3]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[4]  K. Arzner Collisional transport in magnetized plasmas , 2003 .

[5]  H. Maassberg,et al.  Measurement and calculation of the radial electric field in the stellarator W7-AS , 1998 .

[6]  M. Landreman The monoenergetic approximation in stellarator neoclassical calculations , 2011, 1102.2508.

[7]  R. Hazeltine Recursive derivation of drift-kinetic equation. , 1973 .

[8]  E. C. Crume,et al.  Plasma transport coefficients for nonsymmetric toroidal confinement systems , 1986 .

[9]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[10]  M. Taguchi,et al.  A method for calculating neoclassical transport coefficients with momentum conserving collision operator , 1992 .

[11]  F. Sardei,et al.  Physics and Engineering Design for Wendelstein VII-X , 1990 .

[12]  O. Sauter,et al.  A 3-D Fokker-Planck Code for Studying Parallel Transport in Tokamak Geometry with Arbitrary Collisionalities and Application to Neoclassical Resistivity , 1994 .

[13]  Matt Landreman,et al.  Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal , 2012, 1207.1795.

[14]  P. Helander,et al.  Intrinsic ambipolarity and rotation in stellarators. , 2008, Physical review letters.

[15]  Jeff M. Candy,et al.  Full linearized Fokker–Planck collisions in neoclassical transport simulations , 2011 .

[16]  A. Boozer,et al.  Neoclassical transport in helically symmetric plasmas , 1981 .

[17]  M. Landreman,et al.  Effects of the radial electric field in a quasisymmetric stellarator , 2010 .

[18]  H. Sugama,et al.  Momentum balance and radial electric fields in axisymmetric and nonaxisymmetric toroidal plasmas , 2010 .

[19]  D. Spong,et al.  Internal electron transport barrier due to neoclassical ambipolarity in the helically symmetric experiment , 2010 .

[20]  E. Strumberger,et al.  Modular Stellarator Reactors and Plans for Wendelstein 7-X , 1992 .

[21]  R. Kulsrud,et al.  Neoclassical transport in stellarators , 1987 .

[22]  J. Talmadge,et al.  Comparison of the flows and radial electric field in the HSX stellarator to neoclassical calculations , 2012 .

[23]  C. D. Beidler,et al.  Momentum correction techniques for neoclassical transport in stellarators , 2009 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  C. D. Beidler,et al.  Neoclassical Transport Scalings Determined from a General Solution of the Ripple-Averaged Kinetic Equation (GSRAKE) , 1995 .

[26]  D. Spong Generation and damping of neoclassical plasma flows in stellarators , 2004 .

[27]  S. Satake,et al.  Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations , 2010, Comput. Phys. Commun..

[28]  Matt Landreman,et al.  New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions , 2012, J. Comput. Phys..

[29]  S. Hirshman,et al.  Variational bounds for transport coefficients in three-dimensional toroidal plasmas , 1989 .

[30]  Neoclassical momentum transport in a collisional stellarator and a rippled tokamak , 2009 .

[31]  Matthew G. Knepley,et al.  PETSc Users Manual (Rev. 3.3) , 2013 .

[32]  V. Tribaldos Monte Carlo estimation of neoclassical transport for the TJ-II stellarator , 2001 .

[33]  Vincent Chan,et al.  Numerical solution of neoclassical ion transport using the Fokker–Planck operator for Coulomb collisions , 2011 .

[34]  Masayuki Yokoyama,et al.  Core electron-root confinement (CERC) in helical plasmas , 2006 .

[35]  CORRIGENDUM: Neoclassical ion heat flux and poloidal flow in a tokamak pedestal Neoclassical ion heat flux and poloidal flow in a tokamak pedestal , 2009 .

[36]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[37]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[38]  P. Catto,et al.  Drift kinetic equation exact through second order in gyroradius expansion , 2005 .

[39]  Kozo Yamazaki,et al.  Design Study for the Large Helical Device , 1990 .

[40]  H. Sugama,et al.  How to calculate the neoclassical viscosity, diffusion, and current coefficients in general toroidal plasmas , 2002 .

[41]  C. D. Beidler,et al.  On neoclassical impurity transport in stellarator geometry , 2012, 1209.1993.

[42]  P. Helander On rapid plasma rotation , 2007 .

[43]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[44]  M. Rosenbluth,et al.  PLASMA DIFFUSION IN A TOROIDAL STELLARATOR. , 1969 .

[45]  Hideo Sugama,et al.  Development of a Non-Local Neoclassical Transport Code for Helical Configurations , 2008 .

[46]  Allen H. Boozer,et al.  Transport and isomorphic equilibria , 1983 .

[47]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[48]  A. Wakasa,et al.  Results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS) , 2009 .

[49]  C. D. Beidler,et al.  Neoclassical transport simulations for stellarators , 2011 .

[50]  M. Landreman,et al.  Radially global δf computation of neoclassical phenomena in a tokamak pedestal , 2013, 1312.2148.