Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas
暂无分享,去创建一个
Matt Landreman | Per Helander | M. Landreman | P. Helander | A. Moll'en | Haakan M Smith | Albert Moll'en | H. Smith
[1] M. Landreman,et al. Conservation of energy and magnetic moment in neoclassical calculations for optimized stellarators , 2013 .
[2] P. Helander,et al. Pfirsch–Schlüter impurity transport in stellarators , 2010 .
[3] Xiaoye S. Li,et al. SuperLU Users'' Guide , 1997 .
[4] K. Arzner. Collisional transport in magnetized plasmas , 2003 .
[5] H. Maassberg,et al. Measurement and calculation of the radial electric field in the stellarator W7-AS , 1998 .
[6] M. Landreman. The monoenergetic approximation in stellarator neoclassical calculations , 2011, 1102.2508.
[7] R. Hazeltine. Recursive derivation of drift-kinetic equation. , 1973 .
[8] E. C. Crume,et al. Plasma transport coefficients for nonsymmetric toroidal confinement systems , 1986 .
[9] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[10] M. Taguchi,et al. A method for calculating neoclassical transport coefficients with momentum conserving collision operator , 1992 .
[11] F. Sardei,et al. Physics and Engineering Design for Wendelstein VII-X , 1990 .
[12] O. Sauter,et al. A 3-D Fokker-Planck Code for Studying Parallel Transport in Tokamak Geometry with Arbitrary Collisionalities and Application to Neoclassical Resistivity , 1994 .
[13] Matt Landreman,et al. Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal , 2012, 1207.1795.
[14] P. Helander,et al. Intrinsic ambipolarity and rotation in stellarators. , 2008, Physical review letters.
[15] Jeff M. Candy,et al. Full linearized Fokker–Planck collisions in neoclassical transport simulations , 2011 .
[16] A. Boozer,et al. Neoclassical transport in helically symmetric plasmas , 1981 .
[17] M. Landreman,et al. Effects of the radial electric field in a quasisymmetric stellarator , 2010 .
[18] H. Sugama,et al. Momentum balance and radial electric fields in axisymmetric and nonaxisymmetric toroidal plasmas , 2010 .
[19] D. Spong,et al. Internal electron transport barrier due to neoclassical ambipolarity in the helically symmetric experiment , 2010 .
[20] E. Strumberger,et al. Modular Stellarator Reactors and Plans for Wendelstein 7-X , 1992 .
[21] R. Kulsrud,et al. Neoclassical transport in stellarators , 1987 .
[22] J. Talmadge,et al. Comparison of the flows and radial electric field in the HSX stellarator to neoclassical calculations , 2012 .
[23] C. D. Beidler,et al. Momentum correction techniques for neoclassical transport in stellarators , 2009 .
[24] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[25] C. D. Beidler,et al. Neoclassical Transport Scalings Determined from a General Solution of the Ripple-Averaged Kinetic Equation (GSRAKE) , 1995 .
[26] D. Spong. Generation and damping of neoclassical plasma flows in stellarators , 2004 .
[27] S. Satake,et al. Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations , 2010, Comput. Phys. Commun..
[28] Matt Landreman,et al. New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions , 2012, J. Comput. Phys..
[29] S. Hirshman,et al. Variational bounds for transport coefficients in three-dimensional toroidal plasmas , 1989 .
[30] Neoclassical momentum transport in a collisional stellarator and a rippled tokamak , 2009 .
[31] Matthew G. Knepley,et al. PETSc Users Manual (Rev. 3.3) , 2013 .
[32] V. Tribaldos. Monte Carlo estimation of neoclassical transport for the TJ-II stellarator , 2001 .
[33] Vincent Chan,et al. Numerical solution of neoclassical ion transport using the Fokker–Planck operator for Coulomb collisions , 2011 .
[34] Masayuki Yokoyama,et al. Core electron-root confinement (CERC) in helical plasmas , 2006 .
[36] O. Sauter,et al. Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .
[37] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[38] P. Catto,et al. Drift kinetic equation exact through second order in gyroradius expansion , 2005 .
[39] Kozo Yamazaki,et al. Design Study for the Large Helical Device , 1990 .
[40] H. Sugama,et al. How to calculate the neoclassical viscosity, diffusion, and current coefficients in general toroidal plasmas , 2002 .
[41] C. D. Beidler,et al. On neoclassical impurity transport in stellarator geometry , 2012, 1209.1993.
[42] P. Helander. On rapid plasma rotation , 2007 .
[43] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .
[44] M. Rosenbluth,et al. PLASMA DIFFUSION IN A TOROIDAL STELLARATOR. , 1969 .
[45] Hideo Sugama,et al. Development of a Non-Local Neoclassical Transport Code for Helical Configurations , 2008 .
[46] Allen H. Boozer,et al. Transport and isomorphic equilibria , 1983 .
[47] James Demmel,et al. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.
[48] A. Wakasa,et al. Results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS) , 2009 .
[49] C. D. Beidler,et al. Neoclassical transport simulations for stellarators , 2011 .
[50] M. Landreman,et al. Radially global δf computation of neoclassical phenomena in a tokamak pedestal , 2013, 1312.2148.