Exact solutions of discrete complex cubic–quintic Ginzburg–Landau equation with non-local quintic term

[1]  N. Akhmediev,et al.  Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation , 2005 .

[2]  H. Brand,et al.  Stable stationary and breathing holes at the onset of a weakly inverted instability. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  O. Descalzi Static, oscillating modulus, and moving pulses in the one-dimensional quintic complex Ginzburg-Landau equation: an analytical approach. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  X. Geng,et al.  Explicit solutions of some (2 + 1)-dimensional differential-difference equations , 2003 .

[5]  J. Soto-Crespo,et al.  Motion and stability properties of solitons in discrete dissipative structures , 2003 .

[6]  N. Akhmediev,et al.  Exact localized and periodic solutions of the discrete complex Ginzburg–Landau equation , 2003 .

[7]  D. Christodoulides,et al.  Discrete Ginzburg-Landau solitons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  F. Abdullaev,et al.  Autosoliton in Ablowitz–Ladik chain with linear damping and nonlinear amplification , 2002 .

[9]  N. Akhmediev,et al.  Exact Soliton Solutions of the One-dimensional Complex Swift-Hohenberg Equation , 2002, nlin/0209045.

[10]  D. Christodoulides,et al.  Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals , 2002 .

[11]  Gino Biondini,et al.  Methods for discrete solitons in nonlinear lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Kim Ø. Rasmussen,et al.  THE DISCRETE NONLINEAR SCHRÖDINGER EQUATION: A SURVEY OF RECENT RESULTS , 2001 .

[13]  A. Trombettoni,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[14]  B. Malomed,et al.  Stable vortex solitons in the two-dimensional Ginzburg-Landau equation. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  N. Akhmediev,et al.  Solitons of the Complex Ginzburg-Landau Equation , 2001 .

[16]  R. Morandotti,et al.  Dynamics of discrete solitons in optical waveguide arrays , 1999 .

[17]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[18]  C. R. Willis,et al.  Discrete Breathers , 1997, patt-sol/9704004.

[19]  J. Bilbault,et al.  Observation of nonlinear localized modes in an electrical lattice. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Cardoso,et al.  Frustration in a linear array of vortices. , 1991, Physical review letters.

[21]  Brand,et al.  Interaction of two-dimensional localized solutions near a weakly inverted bifurcation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[22]  Otsuka Self-induced phase turbulence and chaotic itinerancy in coupled laser systems. , 1990, Physical review letters.

[23]  D. Christodoulides,et al.  Discrete self-focusing in nonlinear arrays of coupled waveguides. , 1988, Optics letters.

[24]  A. Sievers,et al.  Intrinsic localized modes in anharmonic crystals. , 1988, Physical review letters.

[25]  H. Winful,et al.  Dynamics of phase-locked semiconductor laser arrays , 1988 .

[26]  A. Scott,et al.  Binding energy versus nonlinearity for a small stationary soliton , 1983 .

[27]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[28]  A. Davydov,et al.  The theory of contraction of proteins under their excitation. , 1973, Journal of theoretical biology.