Molecular machines with bio-inspired mechanisms

The widespread use of molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular machines—which by and large function as switches—and the machines of the macroscopic world, which utilize the synchronized behavior of integrated components to perform more sophisticated tasks than is possible with any individual switch. Should we try to make molecular machines of greater complexity by trying to mimic machines from the macroscopic world or instead apply unfamiliar (and no doubt have to discover or invent currently unknown) mechanisms utilized by biological machines? Here we try to answer that question by exploring some of the advances made to date using bio-inspired machine mechanisms.

[1]  Euan R. Kay,et al.  A molecular information ratchet , 2007, Nature.

[2]  Jean-Pierre Sauvage,et al.  From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[3]  D. Leigh,et al.  Artificial Switchable Catalysts , 2015 .

[4]  David A Leigh,et al.  Chiroptical switching in a bistable molecular shuttle. , 2003, Journal of the American Chemical Society.

[5]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[6]  Francesco Zerbetto,et al.  Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films. , 2005, Angewandte Chemie.

[7]  David A Leigh,et al.  Controlled submolecular translational motion in synthesis: a mechanically interlocking auxiliary. , 2004, Angewandte Chemie.

[8]  G. Rapenne,et al.  Technomimetic molecules: synthesis of a molecular wheelbarrow , 2003 .

[9]  David A Leigh,et al.  A synthetic small molecule that can walk down a track. , 2010, Nature chemistry.

[10]  Nathalie Katsonis,et al.  Electrically driven directional motion of a four-wheeled molecule on a metal surface , 2011, Nature.

[11]  David A. Leigh,et al.  Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. , 2016, Nature chemistry.

[12]  Jeanne Bendick Archimedes and the Door of Science , 1995 .

[13]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[14]  R. Astumian,et al.  Chemical peristalsis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  David A Leigh,et al.  Light-driven transport of a molecular walker in either direction along a molecular track. , 2011, Angewandte Chemie.

[16]  Andrei A. Gakh,et al.  Molecular Devices , 2018 .

[17]  Francesco Zerbetto,et al.  A generic basis for some simple light-operated mechanical molecular machines. , 2004, Journal of the American Chemical Society.

[18]  J. W. Ward,et al.  Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine , 2013, Science.

[19]  J. Tour,et al.  Light-Induced Translation of Motorized Molecules on a Surface. , 2016, ACS nano.

[20]  David A Leigh,et al.  Catalytic "click" rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. , 2006, Journal of the American Chemical Society.

[21]  Vincenzo Balzani,et al.  A LIGHT-FUELED PISTON CYLINDER MOLECULAR-LEVEL MACHINE , 1998 .

[22]  I. Derényi,et al.  Fluctuation driven transport and models of molecular motors and pumps , 1998, European Biophysics Journal.

[23]  D. Leigh,et al.  A three-compartment chemically-driven molecular information ratchet. , 2012, Journal of the American Chemical Society.

[24]  I. Aprahamian,et al.  Switching around two axles: controlling the configuration and conformation of a hydrazone-based switch. , 2011, Organic letters.

[25]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[26]  D. Leigh,et al.  An autonomous chemically fuelled small-molecule motor , 2016, Nature.

[27]  Vanesa Marcos,et al.  Stereodivergent synthesis with a programmable molecular machine , 2017, Nature.

[28]  A. Slawin,et al.  A chemically-driven molecular information ratchet. , 2008, Journal of the American Chemical Society.

[29]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[30]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[31]  Hao Li,et al.  An artificial molecular pump. , 2015, Nature nanotechnology.

[32]  H. Vogel,et al.  Current understanding of fatty acid biosynthesis and the acyl carrier protein. , 2010, The Biochemical journal.

[33]  D. Leigh,et al.  Artificial switchable catalysts. , 2015, Chemical Society reviews.

[34]  Ronald F. Scott Soil Engineering in the Arctic , 1960 .

[35]  K. Eric Drexler,et al.  Engines of Creation: the Coming Era of Nanotechnology , 1986 .

[36]  James M. Tour,et al.  How to build and race a fast nanocar. , 2017, Nature nanotechnology.

[37]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[38]  J. W. Ward,et al.  Efficient assembly of threaded molecular machines for sequence-specific synthesis. , 2014, Journal of the American Chemical Society.

[39]  J. Tour,et al.  Directional control in thermally driven single-molecule nanocars. , 2005, Nano letters.

[40]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[41]  K. Alan Shore Molecular devices: an introduction to technomimetics and its biological applications , 2019 .

[42]  M. Smoluchowski,et al.  Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene , 1927 .

[43]  J. Fraser Stoddart,et al.  Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[44]  Euan R Kay,et al.  Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. , 2006, Journal of the American Chemical Society.

[45]  Alberto Credi,et al.  Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. , 2015, Nature nanotechnology.

[46]  R. Astumian Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. , 2007, Physical chemistry chemical physics : PCCP.

[47]  R. Astumian,et al.  How molecular motors work – insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016 , 2016, Chemical science.

[48]  Hiizu Iwamura,et al.  Stereochemical consequences of dynamic gearing , 1988 .

[49]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[50]  Ben L Feringa,et al.  The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). , 2017, Angewandte Chemie.

[51]  Daniel J. Tetlow,et al.  Sequence-Specific β-Peptide Synthesis by a Rotaxane-Based Molecular Machine. , 2017, Journal of the American Chemical Society.

[52]  S. Doughty Mechanics of Machines , 1988 .

[53]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[54]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[55]  Bier,et al.  Fluctuation driven ratchets: Molecular motors. , 1994, Physical review letters.

[56]  S. Goldup,et al.  The active template approach to interlocked molecules , 2017 .

[57]  Frédéric Coutrot,et al.  A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.

[58]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[59]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Daniel J. Tetlow,et al.  Rotary and linear molecular motors driven by pulses of a chemical fuel , 2017, Science.

[61]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.