Rapid design of metamaterials via multitarget Bayesian optimization

Composed of a large number of subwavelength unit cells with designable geometries, metamaterials have been widely studied to achieve extraordinary advantageous and unusual optical properties. However, ordinary computer simulator requires a time-consuming fine-tuning to find a proper design of metamaterial for a specific optical property, making the design stage a critical bottleneck in large scale applications of metamaterials. This paper investigates the metamaterial design under the framework of computer experiments, with emphasis on dealing with the challenge of designing numerous unit cells with functional responses, simultaneously, which is not common in traditional computer experiments. We formulate the multiple related design targets as a multitarget design problem. Leveraging on the similarity between different designs, we propose an efficient Bayesian optimization strategy with a parsimonious surrogate model and an integrated acquisition function to design multiple unit cells with very few function evaluations. A wide range of simulations confirm the effectiveness and superiority of the proposed approach compared to the naive strategies where the multiple unit cells are dealt with separately or sequentially. Such a rapid design strategy has the potential to greatly promote large scale applications of metamaterials in practice.

[1]  Maoguo Gong,et al.  Self-Regulated Evolutionary Multitask Optimization , 2020, IEEE Transactions on Evolutionary Computation.

[2]  Atsuto Seko,et al.  Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. , 2015, Physical review letters.

[3]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[4]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[5]  Yves Deville,et al.  DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .

[6]  Qingfu Zhang,et al.  Evolutionary Multitasking for Multiobjective Continuous Optimization: Benchmark Problems, Performance Metrics and Baseline Results , 2017, ArXiv.

[7]  Kenny Q. Ye Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments , 1998 .

[8]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[9]  Daniel M. Packwood,et al.  Bayesian Optimization for Materials Science , 2017 .

[10]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[11]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[12]  Junichiro Shiomi,et al.  Designing Nanostructures for Phonon Transport via Bayesian Optimization , 2016, 1609.04972.

[13]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[14]  F. Famoye Continuous Univariate Distributions, Volume 1 , 1994 .

[15]  David R. Smith,et al.  Negative refractive index metamaterials , 2006 .

[16]  Dylan Y. Hegh,et al.  Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm. , 2020, ACS Biomaterials Science & Engineering.

[17]  Jasjeet S. Sekhon,et al.  Genetic Optimization Using Derivatives , 2011, Political Analysis.

[18]  Shifeng Xiong,et al.  Sequential Design and Analysis of High-Accuracy and Low-Accuracy Computer Codes , 2013, Technometrics.

[19]  Andreas Manz,et al.  Chip-based microsystems for genomic and proteomic analysis , 2000 .

[20]  Peter I. Frazier,et al.  Bayesian optimization for materials design , 2015, 1506.01349.

[21]  V. Shalaev Optical negative-index metamaterials , 2007 .

[22]  E. Vázquez,et al.  Convergence properties of the expected improvement algorithm with fixed mean and covariance functions , 2007, 0712.3744.

[23]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[24]  Koji Tsuda,et al.  Acceleration of stable interface structure searching using a kriging approach , 2016 .

[25]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[26]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[27]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[28]  R JonesDonald,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998 .

[29]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[30]  Steven A Cummer,et al.  Design of an acoustic metamaterial lens using genetic algorithms. , 2012, The Journal of the Acoustical Society of America.

[31]  L. S. Nelson,et al.  The Nelder-Mead Simplex Procedure for Function Minimization , 1975 .

[32]  T. Tang,et al.  A TWO-STAGE APPROACH FOR FREQUENCY RESPONSE MODELING AND METAMATERIAL RAPID DESIGN , 2017 .

[33]  Anupma Marwaha,et al.  A Review of Metamaterials and its Applications , 2015 .

[34]  Warren B. Powell,et al.  The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression , 2011, SIAM J. Optim..

[35]  Jasper Snoek,et al.  Multi-Task Bayesian Optimization , 2013, NIPS.

[36]  Olivier J. F. Martin,et al.  A broadband and high-gain metamaterial microstrip antenna , 2010 .

[37]  David R. Smith,et al.  Metamaterials: Theory, Design, and Applications , 2009 .

[38]  D. Ginsbourger,et al.  A Multi-points Criterion for Deterministic Parallel Global Optimization based on Gaussian Processes , 2008 .

[39]  Uniform projection designs , 2019, The Annals of Statistics.

[40]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[41]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[42]  Yang Yang,et al.  Bayesian Uncertainty Quantification for Functional Response , 2017 .

[43]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[44]  Jiangtao Huangfu,et al.  Equivalent circuit model for left-handed metamaterials , 2006 .

[45]  Yew-Soon Ong,et al.  Multifactorial Evolution: Toward Evolutionary Multitasking , 2016, IEEE Transactions on Evolutionary Computation.

[46]  Na Li,et al.  The Microstructure Design Optimization of Negative Index Metamaterials Using Genetic Algorithm , 2011 .

[47]  Taro Hitosugi,et al.  Rapid prediction of molecule arrangements on metal surfaces via Bayesian optimization , 2017 .

[48]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[49]  Bin Liu,et al.  Bayesian Nonparametric Modeling for Rapid Design of Metamaterial Microstructures , 2014 .

[50]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[51]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[52]  A. Toscano,et al.  Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples , 2007, IEEE Transactions on Antennas and Propagation.

[53]  Koji Tsuda,et al.  COMBO: An efficient Bayesian optimization library for materials science , 2016 .

[54]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[55]  Abhishek Gupta,et al.  Multifactorial Evolutionary Algorithm With Online Transfer Parameter Estimation: MFEA-II , 2020, IEEE Transactions on Evolutionary Computation.

[56]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[57]  Adam D. Bull,et al.  Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..

[58]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[59]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[60]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..