Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia.

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic tumor resulting from the malignant transformation of immature T-cell progenitors. Originally associated with a dismal prognosis, the outcome of T-ALL patients has improved remarkably over the last two decades as a result of the introduction of intensified chemotherapy protocols. However, these treatments are associated with significant acute and long-term toxicities, and the treatment of patients presenting with primary resistant disease or those relapsing after a transient response remains challenging. T-ALL is a genetically heterogeneous disease in which numerous chromosomal and genetic alterations cooperate to promote the aberrant proliferation and survival of leukemic lymphoblasts. However, the identification of activating mutations in the NOTCH1 gene in over 50% of T-ALL cases has come to define aberrant NOTCH signaling as a central player in this disease. Therefore, the NOTCH pathway represents an important potential therapeutic target. In this review, we will update our current understanding of the molecular basis of T-ALL, with a particular focus on the role of the NOTCH1 oncogene and the development of anti-NOTCH1 targeted therapies for the treatment of this disease.

[1]  J. Whitlock,et al.  Disruption of the RanBP17/Hox11L2 region by recombination with the TCRδ locus in acute lymphoblastic leukemias with t(5;14)(q34;q11) , 2002, Leukemia.

[2]  P. D. de Jong,et al.  The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Sklar,et al.  Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles , 1996, The Journal of experimental medicine.

[4]  T. Honjo,et al.  Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. , 2002, International immunology.

[5]  P. Marynen,et al.  In vitro validation of γ-secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia , 2008, Haematologica.

[6]  W. Kamps,et al.  The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. , 2006, Haematologica.

[7]  L. Girard,et al.  Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. , 1996, Genes & development.

[8]  S. Sabbioni,et al.  t(4;11)(q21;p15) translocation involving NUP98 and RAP1GDS1 genes: characterization of a new subset of T acute lymphoblastic leukaemia , 2000, British journal of haematology.

[9]  Raphael Kopan,et al.  A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. , 2000, Molecular cell.

[10]  F. Sigaux,et al.  HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). , 2005, Blood.

[11]  F. Sigaux,et al.  Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. , 1994, Blood.

[12]  J. Aster,et al.  Notch1 expression in early lymphopoiesis influences B versus T lineage determination. , 1999, Immunity.

[13]  S. Raimondi,et al.  A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). , 1991, Blood.

[14]  A. Ferrando,et al.  The role of NOTCH1 signaling in T-ALL. , 2009, Hematology. American Society of Hematology. Education Program.

[15]  H. Macdonald,et al.  Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. , 2002, Immunity.

[16]  M. Surani,et al.  Segmental and developmental regulation of a presumptive T-cell oncogene in the central nervous system , 1990, Nature.

[17]  M. Ciofani,et al.  Notch promotes survival of pre–T cells at the β-selection checkpoint by regulating cellular metabolism , 2005, Nature Immunology.

[18]  P. Nowell,et al.  Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. , 1986, Science.

[19]  A. Gedman,et al.  Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. , 2009, Blood.

[20]  H. Drexler,et al.  The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). , 2003, Cancer research.

[21]  A. Rimm,et al.  Bone marrow transplants may cure patients with acute leukemia never achieving remission with chemotherapy. , 1992, Blood.

[22]  Y. Hayashi,et al.  Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. , 1999, Leukemia research.

[23]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. , 2003, Blood.

[24]  A. Ferrando,et al.  WT1 mutations in T-ALL. , 2009, Blood.

[25]  T. Honjo,et al.  Regulation of lymphocyte development by Notch signaling , 2007, Nature Immunology.

[26]  G. Sonenshein,et al.  Notch1 augments NF-kappaB activity by facilitating its nuclear retention. , 2006, The EMBO journal.

[27]  Francois Pognan,et al.  Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. , 2004, Toxicological sciences : an official journal of the Society of Toxicology.

[28]  B. Johansson,et al.  Deregulation of cyclin D2 by juxtaposition with T‐cell receptor alpha/delta locus in t(12;14)(p13;q11)‐positive childhood T‐cell acute lymphoblastic leukemia , 2006, European journal of haematology.

[29]  F. Speleman,et al.  NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951 , 2010, Leukemia.

[30]  Raphael Kopan,et al.  Notch signaling: from the outside in. , 2000, Developmental biology.

[31]  A. Ferrando,et al.  The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia , 2007, The Journal of experimental medicine.

[32]  H. Dombret,et al.  NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. , 2009, Blood.

[33]  Peter Marynen,et al.  Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). , 2005, Blood.

[34]  Malay Mandal,et al.  Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. , 2007, Nature medicine.

[35]  M. Ciofani,et al.  A survival guide to early T cell development , 2006, Immunologic research.

[36]  G. Gustafsson,et al.  Allogeneic bone marrow transplantation in second remission of childhood acute lymphoblastic leukemia: a population-based case control study from the Nordic countries , 1999, Bone Marrow Transplantation.

[37]  Charles Lee,et al.  Alu elements mediate MYB gene tandem duplication in human T-ALL , 2007, The Journal of experimental medicine.

[38]  R. Espinosa,et al.  TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Aster,et al.  c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. , 2006, Genes & development.

[40]  P. Wei,et al.  Evaluation of Selective γ-Secretase Inhibitor PF-03084014 for Its Antitumor Efficacy and Gastrointestinal Safety to Guide Optimal Clinical Trial Design , 2010, Molecular Cancer Therapeutics.

[41]  A. Ferrando,et al.  NOTCH mutations as prognostic markers in T-ALL , 2010, Leukemia.

[42]  S. Korsmeyer,et al.  Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. , 1991, Science.

[43]  Iannis Aifantis,et al.  γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia , 2009, Nature Medicine.

[44]  Raymond E. Moellering,et al.  Direct inhibition of the NOTCH transcription factor complex , 2009, Nature.

[45]  J. Sklar,et al.  TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms , 1991, Cell.

[46]  Il-Jin Kim,et al.  FBXW7 Targets mTOR for Degradation and Cooperates with PTEN in Tumor Suppression , 2008, Science.

[47]  R. Tibshirani,et al.  Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. , 2007, Blood.

[48]  T. Rabbitts,et al.  HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  B. Clurman,et al.  Mechanisms of Tumor Suppression by the SCFFbw7 , 2005, Cell cycle.

[50]  J. Aster,et al.  Notch signaling in leukemia. , 2001, Current opinion in hematology.

[51]  G. Weinmaster,et al.  Selective Use of ADAM10 and ADAM17 in Activation of Notch1 Signaling , 2009, Molecular and Cellular Biology.

[52]  Ching-Hon Pui,et al.  Acute lymphoblastic leukemia. , 2004, The New England journal of medicine.

[53]  B. Nadel,et al.  The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. , 2007, Blood.

[54]  C. Masters,et al.  Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer's disease: prospects, limitations and strategies. , 2006, CNS drugs.

[55]  M. Urashima,et al.  Establishment and characteristics of a T-cell acute lymphoblastic leukemia cell line, JK-T1, with a chromosomal translocation between 8q24 and 14q13. , 1992, Cancer genetics and cytogenetics.

[56]  A. Ferrando,et al.  CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to γ-secretase inhibitors , 2006, Leukemia.

[57]  J. Rowley,et al.  Molecular analysis of the t(8;14)(q24;q11) chromosomal breakpoint junctions in the T‐cell leukemia line MOLT‐16 , 1997 .

[58]  S. Reed,et al.  FBXW7/hCDC4 is a general tumor suppressor in human cancer. , 2007, Cancer research.

[59]  Xudong Dai,et al.  Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. , 2009, Cancer research.

[60]  A. Ferrando,et al.  NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. , 2008, Blood.

[61]  A. Ferrando,et al.  T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). , 2009, Blood.

[62]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage , 2003 .

[63]  Andrew P. Stubbs,et al.  The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. , 2007, Blood.

[64]  A. Ferrando,et al.  NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia , 2009, Leukemia.

[65]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[66]  S. Korsmeyer,et al.  The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein , 1989, Molecular and cellular biology.

[67]  Hans Clevers,et al.  Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells , 2005, Nature.

[68]  C. Masters,et al.  Inhibition of γ-Secretase as a Therapeutic Intervention for Alzheimer’s Disease , 2006 .

[69]  J. Sklar,et al.  Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia , 1991, The Journal of experimental medicine.

[70]  P. V. van Diest,et al.  Metalloprotease ADAM10 Is Required for Notch1 Site 2 Cleavage* , 2009, The Journal of Biological Chemistry.

[71]  C. Kenific,et al.  Down‐regulation of the Notch pathway mediated by a γ‐secretase inhibitor induces anti‐tumour effects in mouse models of T‐cell leukaemia , 2009, British journal of pharmacology.

[72]  A. Ferrando,et al.  CSL–MAML-dependent Notch1 signaling controls T lineage–specific IL-7Rα gene expression in early human thymopoiesis and leukemia , 2009, The Journal of experimental medicine.

[73]  J. Downing,et al.  Long-term results of St. Jude Total Therapy studies 11, 12, 13A, 13B and 14 for childhood acute lymphoblastic leukemia , 2009, Leukemia.

[74]  Andrea Califano,et al.  ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes , 2007, Proceedings of the National Academy of Sciences.

[75]  J. Rowley,et al.  The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Y. Hayashi,et al.  FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non‐Hodgkin lymphoma , 2009, British journal of haematology.

[77]  M. Bar‐eli,et al.  N‐RAS mutations in T‐cell acute lymphocytic leukaemia: analysis by direct sequencing detects a novel mutation , 1989, British journal of haematology.

[78]  Malay Mandal,et al.  Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia , 2007, Nature Medicine.

[79]  T. Shows,et al.  Complex MLL rearrangement in a patient with T‐cell acute lymphoblastic leukemia , 1995, Genes, chromosomes & cancer.

[80]  P. Majumder,et al.  Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. , 2009, Blood.

[81]  I. Kirsch,et al.  Disruption of the human SCL locus by "illegitimate" V-(D)-J recombinase activity. , 1990, Science.

[82]  J. Aster,et al.  A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[83]  R. Berger,et al.  Two distinct mechanisms for the SCL gene activation in the t(1;14) translocation of T‐cell leukemias , 1990, Genes, chromosomes & cancer.

[84]  M. Perutz,et al.  The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[85]  H. Macdonald,et al.  Deficient T cell fate specification in mice with an induced inactivation of Notch1. , 1999, Immunity.

[86]  Alexander D. MacKerell,et al.  A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. , 2010, Cancer cell.

[87]  S. Bohlander,et al.  Identification and molecular characterization of CALM/AF10fusion products in T cell acute lymphoblastic leukemia and acute myeloid leukemia , 2000, Leukemia.

[88]  D. Selkoe,et al.  Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. , 2003, Annual review of neuroscience.

[89]  M. Evans,et al.  The Oncogenic Cysteine-rich LIM domain protein Rbtn2 is essential for erythroid development , 1994, Cell.

[90]  M. Muckenthaler,et al.  Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. , 2006, Blood.

[91]  A Cumano,et al.  A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. , 2000, Molecular cell.

[92]  E. Petricoin,et al.  NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols , 2010, Leukemia.

[93]  W. Ludwig,et al.  TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). , 1991, Oncogene.

[94]  M. Cleary,et al.  lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif , 1989, Cell.

[95]  J. Niland,et al.  Allogeneic bone marrow transplantation as therapy for primary induction failure for patients with acute leukemia. , 1991, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[96]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[97]  E. Clappier,et al.  Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia , 2008, The Journal of experimental medicine.

[98]  K. Ross,et al.  Characterization of Notch1 Antibodies That Inhibit Signaling of Both Normal and Mutated Notch1 Receptors , 2010, PloS one.

[99]  Rob Pieters,et al.  FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors , 2007, The Journal of experimental medicine.

[100]  M. Bhasin,et al.  Notch1 Contributes to Mouse T-Cell Leukemia by Directly Inducing the Expression of c-myc , 2006, Molecular and Cellular Biology.

[101]  J. Shuster,et al.  Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. , 1994, The New England journal of medicine.

[102]  S. Armstrong,et al.  Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. , 2003, Blood.

[103]  J. Rowley,et al.  Gene encoding the alpha chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[104]  U. Lendahl,et al.  Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. , 2007, Experimental cell research.

[105]  J. Aster,et al.  Leukemia-Associated Mutations within the NOTCH1 Heterodimerization Domain Fall into at Least Two Distinct Mechanistic Classes , 2006, Molecular and Cellular Biology.

[106]  Andrew P. Weng,et al.  Erratum: NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth (Proceedings of the National Academy of Sciences of the United States of America (2006) 103, 48, (18261-18266) DOI: 10.1073/pnas.0606108103) , 2007 .

[107]  P. Marynen,et al.  A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias , 2005, Leukemia.

[108]  J. V. van Dongen,et al.  The effect of a novel recombination between the homeobox gene NKX2-5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2-5 gene. , 2006, Haematologica.

[109]  W. Friedrich,et al.  Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission after intensive primary and relapse therapy according to the BFM- and CoALL-protocols: results of the German Cooperative Study. , 1991, Blood.

[110]  Hans Clevers,et al.  Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2 , 2008, EMBO reports.

[111]  Michael Wolfe,et al.  J+ = J , 1994, ACM SIGPLAN Notices.

[112]  A. Ferrando,et al.  Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia , 2004, Nature Genetics.

[113]  A. Sarin,et al.  The Anti-apoptotic Effect of Notch-1 Requires p56lck-dependent, Akt/PKB-mediated Signaling in T Cells* , 2004, Journal of Biological Chemistry.

[114]  Boris Reizis,et al.  Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. , 2002, Genes & development.

[115]  R. Pieters,et al.  Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. , 2008, Blood.

[116]  S. Kamel‐Reid,et al.  A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14) , 1991 .

[117]  J. Downing,et al.  Molecular analysis of t(11;19) breakpoints in childhood acute leukemias. , 1996, Blood.

[118]  A. Ferrando,et al.  Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T-cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[119]  U. Lendahl,et al.  Notch-1 associates with IKKα and regulates IKK activity in cervical cancer cells , 2008, Oncogene.

[120]  Govind Bhagat,et al.  Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia , 2007, Nature Medicine.

[121]  T. Waldmann,et al.  The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Rob Pieters,et al.  PHF6 mutations in T-cell acute lymphoblastic leukemia , 2010, Nature Genetics.

[123]  M. Nakagawa,et al.  Translocation between chromosomes 8q24 and 14q11 in T-cell acute lymphoblastic leukemia. , 1990, Cancer genetics and cytogenetics.

[124]  A. Ferrando,et al.  Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. , 2000, Seminars in hematology.

[125]  Thijs J. Hagenbeek,et al.  Therapeutic antibody targeting of individual Notch receptors , 2010, Nature.

[126]  M. Lu,et al.  The tcl‐3 proto‐oncogene altered by chromosomal translocation in T‐cell leukemia codes for a homeobox protein. , 1991, The EMBO journal.

[127]  J. Aster,et al.  Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. , 2008, The Journal of clinical investigation.

[128]  藤井 洋 Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation , 2006 .

[129]  Charles Lee,et al.  The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. , 2006, Blood.

[130]  A. Ferrando,et al.  Requirement for cyclin D3 in lymphocyte development and T cell leukemias. , 2003, Cancer cell.

[131]  J. Aster,et al.  Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. , 2009, Blood.

[132]  Rob Pieters,et al.  Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia , 2007, Nature Genetics.

[133]  A. Carroll,et al.  The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix‐loop‐helix protein. , 1990, The EMBO journal.

[134]  Adam A. Margolin,et al.  NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth , 2006, Proceedings of the National Academy of Sciences.

[135]  J. Aster,et al.  Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. , 2008, Blood.

[136]  F. Sigaux,et al.  Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias , 2006, Leukemia.

[137]  G. Sonenshein,et al.  Notch1 augments NF‐κB activity by facilitating its nuclear retention , 2006 .

[138]  D J Hussey,et al.  The (4;11)(q21;p15) translocation fuses the NUP98 and RAP1GDS1 genes and is recurrent in T-cell acute lymphocytic leukemia. , 1999, Blood.

[139]  P. Nowell,et al.  Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. , 1989, Proceedings of the National Academy of Sciences of the United States of America.