Sparsity-Aware Learning: Algorithms and Applications

This chapter is the follow-up to the previous one concerning sparsity-aware learning. The emphasis now is on the algorithmic front. Greedy, iterative thresholding and convex optimization algorithms are presented and discussed, both for batch as well as online learning. Extensions of the l 1 norm regularization are introduced, such as group sparse modeling, structured sparsity, total variation. The issue of analysis versus synthesis sparse modeling is presented together with the notion of co-sparsity. Finally, a case study of sparse modeling for time-frequency analysis in the context of Gabor frames is demonstrated.

[1]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[2]  Bruno A. Olshausen,et al.  Learning Horizontal Connections in a Sparse Coding Model of Natural Images , 2007, NIPS.

[3]  Rémi Gribonval,et al.  Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling , 2012, IEEE Transactions on Signal Processing.

[4]  Mike E. Davies,et al.  Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance , 2010, IEEE Journal of Selected Topics in Signal Processing.

[5]  Sergios Theodoridis,et al.  Online Sparse System Identification and Signal Reconstruction Using Projections Onto Weighted $\ell_{1}$ Balls , 2010, IEEE Transactions on Signal Processing.

[6]  Georgios B. Giannakis,et al.  Online Adaptive Estimation of Sparse Signals: Where RLS Meets the $\ell_1$ -Norm , 2010, IEEE Transactions on Signal Processing.

[7]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[8]  Francis R. Bach,et al.  Structured Variable Selection with Sparsity-Inducing Norms , 2009, J. Mach. Learn. Res..

[9]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[10]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Analysis , 1998 .

[11]  Gonzalo Mateos,et al.  Distributed Sparse Linear Regression , 2010, IEEE Transactions on Signal Processing.

[12]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[13]  李幼升,et al.  Ph , 1989 .

[14]  Yehoshua Y. Zeevi,et al.  Frame analysis of the discrete Gabor-scheme , 1994, IEEE Trans. Signal Process..

[15]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[16]  Avrim Blum,et al.  Random Projection, Margins, Kernels, and Feature-Selection , 2005, SLSFS.

[17]  Nick G. Kingsbury,et al.  Overcomplete image coding using iterative projection-based noise shaping , 2002, Proceedings. International Conference on Image Processing.

[18]  Sergios Theodoridis,et al.  Sparsity-aware learning in the context of echo cancelation: A set theoretic estimation approach , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[19]  Moeness G. Amin,et al.  Blind source separation based on time-frequency signal representations , 1998, IEEE Trans. Signal Process..

[20]  David L. Donoho,et al.  Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications , 2008, Discret. Comput. Geom..

[21]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[22]  Dmitry M. Malioutov,et al.  Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[23]  Michael Elad,et al.  Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization , 2007 .

[24]  Michael Elad,et al.  L1-L2 Optimization in Signal and Image Processing , 2010, IEEE Signal Processing Magazine.

[25]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[26]  Vahid Tarokh,et al.  An Adaptive Greedy Algorithm With Application to Nonlinear Communications , 2010, IEEE Transactions on Signal Processing.

[27]  M. Davies,et al.  Greedy-like algorithms for the cosparse analysis model , 2012, 1207.2456.

[28]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[29]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[30]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[31]  Panos M. Pardalos,et al.  An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds , 1990, Math. Program..

[32]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[33]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[34]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[35]  Anna C. Gilbert,et al.  Improved time bounds for near-optimal sparse Fourier representations , 2005, SPIE Optics + Photonics.

[36]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[37]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[38]  Ali H. Sayed,et al.  Sparse Distributed Learning Based on Diffusion Adaptation , 2012, IEEE Transactions on Signal Processing.

[39]  Vladimir N. Temlyakov,et al.  Nonlinear Methods of Approximation , 2003, Found. Comput. Math..

[40]  P. Jansson Deconvolution : with applications in spectroscopy , 1984 .

[41]  A. TroppJ. Greed is good , 2006 .

[42]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[43]  Julien Mairal,et al.  Structured sparsity through convex optimization , 2011, ArXiv.

[44]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[45]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[46]  David M. Young,et al.  Applied Iterative Methods , 2004 .

[47]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[48]  John Langford,et al.  Sparse Online Learning via Truncated Gradient , 2008, NIPS.

[49]  Sergios Theodoridis,et al.  Generalized Thresholding and Online Sparsity-Aware Learning in a Union of Subspaces , 2011, IEEE Transactions on Signal Processing.

[50]  Volkan Cevher,et al.  Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective , 2010, Proceedings of the IEEE.

[51]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[52]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[53]  Ronald A. DeVore,et al.  Some remarks on greedy algorithms , 1996, Adv. Comput. Math..

[54]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[55]  Volkan Cevher,et al.  Sparse Signal Recovery and Acquisition with Graphical Models , 2010, IEEE Signal Processing Magazine.

[56]  Sergios Theodoridis,et al.  Sparsity-aware distributed learning , 2016, Big Data over Networks.

[57]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[58]  Sergey Bakin,et al.  Adaptive regression and model selection in data mining problems , 1999 .

[59]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[60]  Arian Maleki,et al.  Optimally Tuned Iterative Reconstruction Algorithms for Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.

[61]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[62]  Michael Riis Andersen,et al.  Sparse inference using approximate message passing , 2014 .

[63]  S. Mallat A wavelet tour of signal processing , 1998 .

[64]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[65]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[66]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[67]  Stephen J. Wright,et al.  Simultaneous Variable Selection , 2005, Technometrics.

[68]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[69]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[70]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[71]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[72]  Ben Taskar,et al.  Joint covariate selection and joint subspace selection for multiple classification problems , 2010, Stat. Comput..

[73]  Sergios Theodoridis,et al.  Generalized thresholding sparsity-aware algorithm for low complexity online learning , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[74]  Elias Aboutanios,et al.  Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls. , 2010, The Journal of the Acoustical Society of America.

[75]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[76]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[77]  Mohamed-Jalal Fadili,et al.  The Undecimated Wavelet Decomposition and its Reconstruction , 2007, IEEE Transactions on Image Processing.

[78]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[79]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[80]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[81]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[82]  David L. Donoho,et al.  Precise Undersampling Theorems , 2010, Proceedings of the IEEE.

[83]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[84]  Yue M. Lu,et al.  Sampling Signals from a Union of Subspaces , 2008, IEEE Signal Processing Magazine.

[85]  Babak Hassibi,et al.  Recovering Sparse Signals Using Sparse Measurement Matrices in Compressed DNA Microarrays , 2008, IEEE Journal of Selected Topics in Signal Processing.

[86]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[87]  Michael Elad,et al.  Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model , 2013, IEEE Transactions on Signal Processing.

[88]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[89]  Michael Elad,et al.  Performance Guarantees of the Thresholding Algorithm for the Cosparse Analysis Model , 2013, IEEE Transactions on Information Theory.

[90]  Sergios Theodoridis,et al.  A Sparsity Promoting Adaptive Algorithm for Distributed Learning , 2012, IEEE Transactions on Signal Processing.

[91]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[92]  Boualem Boashash,et al.  Time Frequency Analysis , 2003 .

[93]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[94]  Yonina C. Eldar,et al.  C-HiLasso: A Collaborative Hierarchical Sparse Modeling Framework , 2010, IEEE Transactions on Signal Processing.

[95]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[96]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[97]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[98]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[99]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[100]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[101]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[102]  Deanna Needell,et al.  Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..

[103]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[104]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[105]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[106]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[107]  Justin K. Romberg,et al.  Dynamic Updating for $\ell_{1}$ Minimization , 2009, IEEE Journal of Selected Topics in Signal Processing.

[108]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[109]  I. Johnstone,et al.  Maximum entropy reconstruction of complex (phase-sensitive) spectra , 1990 .

[110]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[111]  Stephen J. Wright,et al.  Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..

[112]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .