The effect of riboflavin supplementation on the systemic redox status in healthy volunteers: A post-hoc analysis of the RIBOGUT trial.

[1]  H. Harmsen,et al.  Riboflavin Supplementation Promotes Butyrate Production in the Absence of Gross Compositional Changes in the Gut Microbiota , 2022, Antioxidants & redox signaling.

[2]  S. Wootton,et al.  Systems redox biology in health and disease , 2022, EXCLI journal.

[3]  Chenzhong Liao,et al.  Riboflavin Bioenriched Soymilk Alleviates Oxidative Stress Mediated Liver Injury, Intestinal Inflammation, and Gut Microbiota Modification in B2 Depletion-Repletion Mice. , 2022, Journal of agricultural and food chemistry.

[4]  M. Bernaudin,et al.  The Reactive Species Interactome in the brain. , 2021, Antioxidants & redox signaling.

[5]  H. Harmsen,et al.  Vitamin C Supplementation in Healthy Individuals Leads to Shifts of Bacterial Populations in the Gut—A Pilot Study , 2021, Antioxidants.

[6]  Lyanne M. Kieneker,et al.  Systemic Oxidative Stress, Aging and the Risk of Cardiovascular Events in the General Female Population , 2021, Frontiers in Cardiovascular Medicine.

[7]  R. Steinert,et al.  Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome– a pilot study , 2021, Gut microbes.

[8]  M. van Meurs,et al.  Acute Kidney Injury is Associated with Lowered Plasma-Free Thiol Levels , 2020, Antioxidants.

[9]  K. Faber,et al.  Oxidative Stress and Redox-Modulating Therapeutics in Inflammatory Bowel Disease. , 2020, Trends in molecular medicine.

[10]  S. Bakker,et al.  Oxidative stress is associated with suspected non‐alcoholic fatty liver disease and all‐cause mortality in the general population , 2020, Liver international : official journal of the International Association for the Study of the Liver.

[11]  Lyanne M. Kieneker,et al.  Serum free thiols predict cardiovascular events and all-cause mortality in the general population: a prospective cohort study , 2020, BMC Medicine.

[12]  Dean P. Jones,et al.  Reactive oxygen species (ROS) as pleiotropic physiological signalling agents , 2020, Nature Reviews Molecular Cell Biology.

[13]  P. de Vos,et al.  Riboflavin Supplementation in Patients with Crohn’s Disease [the RISE-UP study] , 2019, Journal of Crohn's & colitis.

[14]  R. Steinert,et al.  Vitamins for the Gut Microbiome. , 2019, Trends in molecular medicine.

[15]  Martin Feelisch,et al.  The Redox architecture of physiological function , 2019, Current opinion in physiology.

[16]  K. Faber,et al.  Crohn’s Disease in Clinical Remission Is Marked by Systemic Oxidative Stress , 2019, Front. Physiol..

[17]  Kento Sawane,et al.  Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity , 2019, Front. Nutr..

[18]  Jingyuan Fu,et al.  Anti-inflammatory Gut Microbial Pathways Are Decreased During Crohn’s Disease Exacerbations , 2019, Journal of Crohn's & colitis.

[19]  K. Faber,et al.  Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases , 2019, Front. Immunol..

[20]  H. van Goor,et al.  Serum free thiols in type 2 diabetes mellitus: A prospective study , 2019, Journal of clinical & translational endocrinology.

[21]  M. Frenneaux,et al.  A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome , 2018, Redox biology.

[22]  D. Wink,et al.  The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine , 2017, Antioxidants & redox signaling.

[23]  K. Faber,et al.  The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. , 2017, Anaerobe.

[24]  S. Bakker,et al.  Serum free sulfhydryl status is associated with patient and graft survival in renal transplant recipients. , 2016, Free radical biology & medicine.

[25]  R. D. de Boer,et al.  Serum free thiols in chronic heart failure. , 2016, Pharmacological research.

[26]  H. Harmsen,et al.  The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate? , 2016, European Journal of Clinical Nutrition.

[27]  D. T. Loots,et al.  Metabolomics and Personalized Medicine. , 2016, Advances in protein chemistry and structural biology.

[28]  H. Sies,et al.  Oxidative stress: a concept in redox biology and medicine , 2015, Redox biology.

[29]  D. Wink,et al.  Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. , 2014, Free radical biology & medicine.

[30]  M. Ashoori,et al.  Riboflavin (vitamin B2) and oxidative stress: a review , 2014, British Journal of Nutrition.

[31]  M. Otagiri,et al.  Redox properties of serum albumin. , 2013, Biochimica et biophysica acta.

[32]  Rafael Radi,et al.  The thiol pool in human plasma: the central contribution of albumin to redox processes. , 2013, Free radical biology & medicine.

[33]  H. Said Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. , 2013, American journal of physiology. Gastrointestinal and liver physiology.

[34]  H. Harmsen,et al.  How can Faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer? , 2012, Antioxidants & redox signaling.

[35]  Harry J Flint,et al.  The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic–anoxic interphases , 2012, The ISME Journal.

[36]  J. Gordon,et al.  Human nutrition, the gut microbiome and the immune system , 2011, Nature.

[37]  P. Bross,et al.  Emerging roles for riboflavin in functional rescue of mitochondrial β-oxidation flavoenzymes. , 2010, Current medicinal chemistry.

[38]  P. Moreira,et al.  Riboflavin supplementation and biomarkers of cardiovascular disease in the elderly , 2009, The journal of nutrition, health & aging.

[39]  C. Schmid,et al.  A new equation to estimate glomerular filtration rate. , 2009, Annals of internal medicine.

[40]  Bo George,et al.  Oxidative stress and the effect of riboflavin supplementation in individuals with uncomplicated malaria infection. , 2009 .

[41]  J. Doré,et al.  Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients , 2008, Proceedings of the National Academy of Sciences.

[42]  A. Lamprecht,et al.  Alternative drug delivery approaches for the therapy of inflammatory bowel disease. , 2008, Journal of pharmaceutical sciences.

[43]  L. Herzenberg,et al.  N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. , 2007, Current opinion in pharmacology.

[44]  H. Harmsen,et al.  Molecular Diversity, Cultivation, and Improved Detection by Fluorescent In Situ Hybridization of a Dominant Group of Human Gut Bacteria Related to Roseburia spp. or Eubacterium rectale , 2006, Applied and Environmental Microbiology.

[45]  H. McNulty,et al.  Riboflavin Lowers Homocysteine in Individuals Homozygous for the MTHFR 677C→T Polymorphism , 2005, Circulation.

[46]  H. Powers Riboflavin (vitamin B-2) and health. , 2003, The American journal of clinical nutrition.

[47]  B. Le Bizec,et al.  Simultaneous measurement of plasma concentrations and 13C-enrichment of short-chain fatty acids, lactic acid and ketone bodies by gas chromatography coupled to mass spectrometry. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[48]  R. Newcombe,et al.  Effect of riboflavin status on the homocysteine-lowering effect of folate in relation to the MTHFR (C677T) genotype. , 2003, Clinical chemistry.

[49]  V. M. Kodentsova,et al.  [The connection between vitamin and antioxidant status of the children with decreased hemoglobin level]. , 2003, Voprosy pitaniia.

[50]  R. Pero,et al.  Reduced level of serum thiols in patients with a diagnosis of active disease. , 2003, Journal of anti-aging medicine.

[51]  H. Harmsen,et al.  Extensive Set of 16S rRNA-Based Probes for Detection of Bacteria in Human Feces , 2002, Applied and Environmental Microbiology.

[52]  H. McNulty,et al.  Effect of riboflavin supplementation on plasma homocysteine in elderly people with low riboflavin status , 2002, European Journal of Clinical Nutrition.

[53]  P. Wilson,et al.  Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. , 2001, The American journal of clinical nutrition.

[54]  J. Doré,et al.  Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. , 2001, Systematic and applied microbiology.

[55]  V. Massey The chemical and biological versatility of riboflavin. , 2000, Biochemical Society transactions.

[56]  S. M. Deneke Thiol-based antioxidants. , 2000, Current topics in cellular regulation.

[57]  J. Galloway,et al.  Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. , 1996, The American journal of clinical nutrition.

[58]  B. Kalyanaraman Thiyl radicals in biological systems: significant or trivial? , 1995, Biochemical Society symposium.

[59]  C. S. Kristensen,et al.  Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization , 1994, Infection and immunity.

[60]  R. Amann,et al.  Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations , 1990, Applied and environmental microbiology.

[61]  B. Das,et al.  Increased plasma lipid peroxidation in riboflavin-deficient, malaria-infected children. , 1990, The American journal of clinical nutrition.

[62]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.