Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

One of the central tasks in quantum error-correction is to construct quantum codes that have good parameters. In this paper, we construct three new classes of quantum MDS codes from classical Hermitian self-orthogonal generalized Reed-Solomon codes. We also present some classes of quantum codes from matrix-product codes. It turns out that many of our quantum codes are new in the sense that the parameters of quantum codes cannot be obtained from all previous constructions.

[1]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[2]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[3]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[4]  Chaoping Xing,et al.  A Construction of New Quantum MDS Codes , 2013, IEEE Transactions on Information Theory.

[5]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[6]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[7]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[8]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[9]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[11]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[12]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[13]  Graham H. Norton,et al.  Matrix-Product Codes over ?q , 2001, Applicable Algebra in Engineering, Communication and Computing.

[14]  Zhuo Li,et al.  Quantum generalized Reed-Solomon codes: Unified framework for quantum MDS codes , 2008, ArXiv.

[15]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[16]  Fernando Hernando,et al.  Construction and decoding of matrix-product codes from nested codes , 2009, Applicable Algebra in Engineering, Communication and Computing.

[17]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[18]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[19]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[20]  Martin Rötteler,et al.  On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[21]  Giuliano G. La Guardia,et al.  New Quantum MDS Codes , 2011, IEEE Transactions on Information Theory.

[22]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[23]  Carlos Galindo,et al.  New quantum codes from evaluation and matrix-product codes , 2014, Finite Fields Their Appl..

[24]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.