Post-buckled propagation model for compressive fatigue of impact damaged laminates

An analytical model for prediction of compressive fatigue threshold strains in composite plates with barely visible impact damage (BVID) is presented. The model represents the complex damage morphology as a single circular delamination at a critical level and calculates the strain at which thin-film buckling of the circular delaminated region occurs. The threshold strain is defined as the strain at which the strain energy release rate for the fracture of post-buckled delaminated plies along the delamination is equal to the critical Mode I value (G1C) for the resin. The model predicts the critical through-thickness level for delamination, the stability of delamination growth and also the sensitivity to experimental error in geometric measurements of the damage area. Results obtained using the model show an agreement of fatigue strain to within 4% of experimental values for four sets of data reported in the literature.

[1]  Shun-Fa Hwang,et al.  Buckling behavior of composite laminates with multiple delaminations under uniaxial compression , 2001 .

[2]  David Kennedy,et al.  Transverse shear deformation in exact buckling and vibration of composite plate assemblies , 1993 .

[3]  C. D. Babcock,et al.  Two-Dimensional Modelling of Compressive Failure in Delaminated Laminates , 1985 .

[4]  F. W. Williams,et al.  Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings , 1974 .

[5]  Joakim Schön,et al.  Buckling behaviour and delamination growth in impacted composite specimens under fatigue load: an experimental study , 2001 .

[6]  Darryl P Almond,et al.  In situ monitoring in real time of fatigue-induced damage growth in composite materials by acoustography , 2001 .

[7]  Richard Butler,et al.  Nonlinear Modeling of Delaminated Struts , 2003 .

[8]  M. S. Anderson,et al.  Buckling and vibration of any prismatic assembly of shear and compression loaded anisotropic plates with an arbitrary supporting structure , 1983 .

[9]  L. Melin,et al.  Fatigue testing and buckling characteristics of impacted composite specimens , 2002 .

[10]  Hiroshi Suemasu,et al.  Compressive Behavior of Multiply Delaminated Composite Laminates Part 1: Experiment and Analytical Development , 1998 .

[11]  J. Thompson,et al.  Elastic Instability Phenomena , 1984 .

[12]  Paul M. Weaver,et al.  Approximate Solution and Optimum Design of Compression-Loaded, Postbuckled Laminated Composite Plates , 2005 .

[13]  W. Knauss,et al.  One dimensional modelling of failure in laminated plates by delamination buckling , 1981 .

[14]  D. Almond,et al.  Compressive fatigue limit of impact damaged composite laminates , 2007 .

[15]  Richard Butler,et al.  User manual for VICONOPT: An exact analysis and optimum design program covering the buckling and vibration of prismatic assemblies of flat in-plane loaded, anisotropic plates, with approximations for discrete supports, and transverse stiffeners , 1990 .