Integrated Computational and Experimental Structure Refinement for Nanoparticles.

Determining the three-dimensional (3D) atomic structure of nanoparticles is critical to identifying the structures controlling their properties. Here, we demonstrate an integrated genetic algorithm (GA) optimization tool that refines the 3D structure of a nanoparticle by matching forward modeling to experimental scanning transmission electron microscopy (STEM) data and simultaneously minimizing the particle energy. We use the tool to create a refined 3D structural model of an experimentally observed ∼6000 atom Au nanoparticle.

[1]  Bernd Hartke,et al.  Application of Evolutionary Algorithms to Global Cluster Geometry Optimization , 2004 .

[2]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[3]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[4]  W. Dahmen,et al.  High-precision scanning transmission electron microscopy at coarse pixel sampling for reduced electron dose , 2015, Advanced Structural and Chemical Imaging.

[5]  S. Erkoç,et al.  Genetic algorithm–Monte Carlo hybrid geometry optimization method for atomic clusters , 2009 .

[6]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[7]  Z. H. Melgarejo,et al.  Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. , 2012, Physical review letters.

[8]  Roy L. Johnston,et al.  Development and optimization of a novel genetic algorithm for identifying nanoclusters from scanning transmission electron microscopy images , 2012, J. Comput. Chem..

[9]  I. Snook,et al.  Structural analysis of carbonaceous solids using an adapted reverse Monte Carlo algorithm , 2003 .

[10]  L. Allen,et al.  High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment , 2009 .

[11]  Tam Mayeshiba,et al.  Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures , 2014 .

[12]  Earl J. Kirkland,et al.  Advanced Computing in Electron Microscopy , 1998 .

[13]  Gao,et al.  Parameterization of the temperature dependence of the Debye-Waller factors. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[14]  C. Dwyer,et al.  Measurement of effective source distribution and its importance for quantitative interpretation of STEM images , 2010 .

[15]  Gustaaf Van Tendeloo,et al.  Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals. , 2013, Nano letters.

[16]  Marcus Hutter,et al.  Fitness uniform selection to preserve genetic diversity , 2001, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  J. Miao,et al.  Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution , 2013, Nature.

[18]  Susanne Stemmer,et al.  Standardless atom counting in scanning transmission electron microscopy. , 2010, Nano letters.

[19]  J. Miao,et al.  Electron tomography at 2.4-ångström resolution , 2012, Nature.

[20]  Susanne Stemmer,et al.  Quantitative atomic resolution scanning transmission electron microscopy. , 2008, Physical review letters.

[21]  William F. Punch,et al.  Ab initio Determination of Solid-State Nanostructure. , 2006 .

[22]  K. Ho,et al.  Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm , 2009 .

[23]  Bryce Meredig,et al.  A hybrid computational-experimental approach for automated crystal structure solution. , 2013, Nature materials.

[24]  Benjamin Berkels,et al.  Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts , 2014, Nature Communications.

[25]  A. Bleloch,et al.  Three‐Dimensional Atomic‐Scale Structure of Size‐Selected Gold Nanoclusters. , 2008 .

[26]  Reinhard B. Neder,et al.  Diffuse Scattering and Defect Structure Simulations: A Cook Book Using the Program DISCUS , 2009 .

[27]  Shujiang Yang,et al.  Genetic algorithm optimization of defect clusters in crystalline materials , 2015 .

[28]  P. Nellist,et al.  Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy. , 2014, Nano letters.

[29]  Scott M. Woodley,et al.  Prediction of crystal structures using evolutionary algorithms and related techniques , 2004 .

[30]  J. Doye,et al.  Structural transitions in the 309-atom magic number Lennard-Jones cluster. , 2005, The Journal of chemical physics.

[31]  R. Hennig,et al.  Structure and stability prediction of compounds with evolutionary algorithms. , 2014, Topics in current chemistry.

[32]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[33]  F. Zaera New Challenges in Heterogeneous Catalysis for the 21st Century , 2012, Catalysis Letters.

[34]  Johannes M. Dieterich,et al.  OGOLEM: Global cluster structure optimisation for arbitrary mixtures of flexible molecules. A multiscaling, object-oriented approach , 2010 .

[35]  J. C. Phillips Chemical bonding, kinetics and the approach to equilibrium structures of simple metallic, molecular, and network microclusters , 1986 .

[36]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[37]  C. Dwyer,et al.  Simulation of scanning transmission electron microscope images on desktop computers. , 2010, Ultramicroscopy.

[38]  G. Tendeloo,et al.  Three-dimensional atomic imaging of crystalline nanoparticles , 2011, Nature.

[39]  Wolfgang Dahmen,et al.  Optimized imaging using non-rigid registration , 2014, Ultramicroscopy.

[40]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .