Censored Regression Quantiles

Using quantile regression to analyze survival times offers an valuable complement to traditional Cox proportional hazards modelling. Unfortunately, this approach has been hampered by the lack of a conditional quantile estimator for censored data that is directly analogous to the Kaplan–Meier estimator and applies under standard assumptions for censored regression models. Here a recursively reweighted estimator of the regression quantile process is developed as a direct generalization of the Kaplan–Meier estimator. Specifically, the asymptotic behavior is directly analogous to that of the Kaplan–Meier estimator, and computation is essentially equivalent to current simplex methods for the quantile process in the uncensored case. Some preliminary examples suggest the strong potential of these methods as a complement to the use of Cox models.

[1]  Stephen Portnoy,et al.  Asymptotic Behavior of the Number of Regression Quantile Breakpoints , 1991, SIAM J. Sci. Comput..

[2]  Bernd Fitzenberger,et al.  A Guide to Censored Quantile Regressions , 1997 .

[3]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[4]  Stephen Portnoy,et al.  Statistical inference on heteroscedastic models based on regression quantiles , 1998 .

[5]  Roger Koenker,et al.  Tests of linear hypotheses based on regression rank scores , 1993 .

[6]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[7]  Zhiliang Ying,et al.  Simple resampling methods for censored regression quantiles , 2000 .

[8]  Feifang Hu,et al.  Markov Chain Marginal Bootstrap , 2002 .

[9]  Anna Lindgren,et al.  Quantile regression with censored data using generalized L 1 minimization , 1997 .

[10]  B. Efron The two sample problem with censored data , 1967 .

[11]  Zhiliang Ying,et al.  Survival analysis with median regression models , 1995 .

[12]  Nancy Reid,et al.  On “A conversation with Sir David Cox” , 1994, Issue 5.2, Spring 2023.

[13]  Xuming He,et al.  Practical Confidence Intervals for Regression Quantiles , 2005 .

[14]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[15]  J. Powell,et al.  Censored regression quantiles , 1986 .

[16]  Bo E. Honoré,et al.  Quantile regression under random censoring , 2002 .

[17]  R. Koenker,et al.  Reappraising Medfly Longevity , 2001 .

[18]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[19]  James L. Powell,et al.  Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions , 1990, Econometric Theory.

[20]  A. Bose,et al.  Generalised bootstrap in non-regular M-estimation problems , 2001 .

[21]  Regression-quantile graduation of Australian life tables, 1946–1992 , 1997 .

[22]  Song Yang,et al.  Censored Median Regression Using Weighted Empirical Survival and Hazard Functions , 1999 .

[23]  S. Portnoy Asymptotic behavior of regression quantiles in non-stationary, dependent cases , 1991 .

[24]  Jinyong Hahn,et al.  An Alternative Estimator for the Censored Quantile Regression Model , 1998 .

[25]  P. V. Rao,et al.  Applied Survival Analysis: Regression Modeling of Time to Event Data , 2000 .

[26]  Han Hong,et al.  Three-Step Censored Quantile Regression and Extramarital Affairs , 2002 .