A splitting method for incompressible flows with variable density based on a pressure Poisson equation
暂无分享,去创建一个
[1] R. Rannacher. On chorin's projection method for the incompressible navier-stokes equations , 1992 .
[2] R. Temam. Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .
[3] P. Colella,et al. A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .
[4] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[5] Jean-Luc Guermond,et al. Some implementations of projection methods for Navier-Stokes equations , 1996 .
[6] Jean-Luc Guermond,et al. On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.
[7] T. Hughes,et al. The Galerkin/least-squares method for advective-diffusive equations , 1988 .
[8] Jean-Luc Guermond. Un résultat de convergence d'ordre deux pour l'approximation des équations de Navier-Stokes par projection incrémentale , 1997 .
[9] Noel Walkington,et al. Convergence of the Discontinuous Galerkin Method for Discontinuous Solutions , 2004, SIAM J. Numer. Anal..
[10] M. Minion,et al. Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .
[11] Navier-Stokes equations,et al. ON ERROR ESTIMATES OF PROJECTION METHODS FOR , 1992 .
[12] Jean-Luc Guermond,et al. Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .
[13] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[14] Jean-Luc Guermond,et al. Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .
[15] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[16] J. Bell,et al. A Second-Order Projection Method for Variable- Density Flows* , 1992 .
[17] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[18] J. Craggs. Applied Mathematical Sciences , 1973 .
[19] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .
[20] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[21] Jie Shen,et al. E-cient Chebyshev-Legendre Galerkin Methods for Elliptic Problems , 1996 .
[22] Jie Shen,et al. Gauge-Uzawa methods for incompressible flows with variable density , 2007, J. Comput. Phys..
[23] P. Lions. Mathematical topics in fluid mechanics , 1996 .
[24] Jie Shen,et al. On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..
[25] Jean-Luc Guermond,et al. Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM , 1997 .
[26] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[27] T. F. Russell,et al. NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .
[28] Chun Liu,et al. Convergence of Numerical Approximations of the Incompressible Navier-Stokes Equations with Variable Density and Viscosity , 2007, SIAM J. Numer. Anal..
[29] Jean-Luc Guermond,et al. Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers , 2006 .
[30] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[31] L. Quartapelle,et al. A projection FEM for variable density incompressible flows , 2000 .
[32] Abner J. Salgado,et al. A fractional step method based on a pressure Poisson equation for incompressible flows with variable density , 2008 .
[33] G. Tryggvason. Numerical simulations of the Rayleigh-Taylor instability , 1988 .
[34] Frans N. van de Vosse,et al. An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .
[35] Jean-Luc Guermond,et al. Approximation of variable density incompressible flows by means of finite elements and finite volumes , 2001 .
[36] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.