Solution of Scott's problem on the number of directions determined by a point set in 3-space

Let <i>P</i> be a set of <i>n</i> points in ℝ<sup>3</sup>, not all in a common plane. We solve a problem of Scott (1970) by showing that the connecting lines of <i>P</i> assume at least 2<i>n</i>-7 different directions if <i>n</i> is even and at least 2<i>n</i>-5 if <i>n</i> is odd. The bound for odd <i>n</i> is sharp.

[1]  George B. Purdy,et al.  The Directions Determined by n Points in the Plane , 1979 .

[2]  Ferenc Wettl,et al.  On the nuclei of a pointset of a finite projective plane , 1987 .

[3]  Robert E. Jamison,et al.  A SURVEY OF THE SLOPE PROBLEM , 1985 .

[4]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[5]  Micha Sharir,et al.  A tight bound for the number of different directions in three dimensions , 2003, SCG '03.

[6]  R. Pollack,et al.  Allowable Sequences and Order Types in Discrete and Computational Geometry , 1993 .

[7]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[8]  Micha Sharir,et al.  Abstract. , 2013, Virologie.

[9]  Peter Ungar,et al.  2N Noncollinear Points Determine at Least 2N Directions , 1982, J. Comb. Theory, Ser. A.

[10]  Aart Blokhuis,et al.  The Number of Directions Determined by Points in the Three-Dimensional Euclidean Space , 2002, Discret. Comput. Geom..

[11]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[12]  L. Lovász,et al.  Remarks on a theorem of Redei , 1981 .

[13]  Tamás Szonyi Around Rédei's theorem , 1999, Discret. Math..

[14]  P. R. Scott On the Sets of Directions Determined by n Points , 1970 .

[15]  Robert E. Jamison,et al.  Properties of Affinely Regular Polygons , 1998 .

[16]  Raul Cordovil,et al.  The directions determined by n points in the plane: a matroidal generalization , 1983, Discret. Math..