The bulk composition of Mars

[1]  B. Wood,et al.  Volcanism on Mars controlled by early oxidation of the upper mantle , 2013, Nature.

[2]  John H. Jones Experimental Trace Element Partitioning , 2013 .

[3]  R. Wiens,et al.  The Petrochemistry of Jake_M: A Martian Mugearite , 2013, Science.

[4]  A. Steele,et al.  Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 , 2013, Science.

[5]  G. J. Taylor,et al.  Magmatic water in the martian meteorite Nakhla , 2012 .

[6]  John H. Jones,et al.  Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites , 2012 .

[7]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[8]  F. McCubbin,et al.  Hydrous melting of the martian mantle produced both depleted and enriched shergottites , 2012 .

[9]  H. O’Neill,et al.  Analysis of 60 elements in 616 ocean floor basaltic glasses , 2012 .

[10]  L. Taylor,et al.  Evolution of the martian mantle inferred from the 187Re–187Os isotope and highly siderophile element abundance systematics of shergottite meteorites , 2012 .

[11]  P. H. Warren,et al.  Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites , 2011 .

[12]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[13]  L. Nittler,et al.  Radioactive Elements on Mercury’s Surface from MESSENGER: Implications for the Planet’s Formation and Evolution , 2011, Science.

[14]  Richard D. Starr,et al.  The Major-Element Composition of Mercury’s Surface from MESSENGER X-ray Spectrometry , 2011, Science.

[15]  Cin-Ty A. Lee,et al.  Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting , 2011 .

[16]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[17]  J. Filiberto,et al.  Fe2+–Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior , 2011 .

[18]  G. J. Taylor,et al.  K and Cl concentrations on the Martian surface determined by the Mars Odyssey Gamma Ray Spectrometer: Implications for bulk halogen abundances in Mars , 2010 .

[19]  J. Grimwood,et al.  A Younger Age for ALH84001 and Its Geochemical Link to Shergottite Sources in Mars , 2010, Science.

[20]  F. McCubbin,et al.  Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian , 2010 .

[21]  D. Lauretta,et al.  Making the Earth: Combining Dynamics and Chemistry in the Solar System , 2009, 0911.0426.

[22]  A. Lemaitre,et al.  Latitudinal librations of Mercury with a fluid core , 2009 .

[23]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[24]  F. Albarède,et al.  Martian meteorite chronology and the evolution of the interior of Mars , 2009 .

[25]  M. Lane,et al.  HIGH-MAGNESIAN OLIVINE IN THE ARGYRE RIM: DERIVED FROM A PRIMITIVE MAGMA? , 2009 .

[26]  H. Palme,et al.  Collisional erosion and the non-chondritic composition of the terrestrial planets , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  R. Walker Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation , 2008 .

[28]  S. Squyres,et al.  Mars Exploration Rovers - Chemical composition by APXS , 2008 .

[29]  H. McSween,et al.  The Martian Surface: Implications of observed primary lithologies , 2008 .

[30]  Victoria E. Hamilton,et al.  Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 2008 .

[31]  R. Clayton,et al.  Oxygen Isotopic Composition and Chemical Correlations in Meteorites and the Terrestrial Planets , 2008 .

[32]  M. Mottl,et al.  Water and astrobiology , 2007 .

[33]  Richard D. Starr,et al.  Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars , 2007 .

[34]  A. Knoll,et al.  Geochemistry, Mineralogy and Diagenesis of the Burns Formation at Meridiani Planum: Insights into the Sedimentary Rock Cycle on Mars , 2007 .

[35]  F. McCubbin,et al.  Alkalic parental magmas for chassignites? , 2007 .

[36]  Richard D. Starr,et al.  Bulk composition and early differentiation of Mars , 2007 .

[37]  Richard D. Starr,et al.  Variations in K/Th on Mars , 2007 .

[38]  William V. Boynton,et al.  Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: Implications for Martian crustal evolution , 2007 .

[39]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[40]  R. Walker,et al.  Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths , 2006 .

[41]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[42]  Richard V. Morris,et al.  Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .

[43]  A. Treiman,et al.  Experimental petrology of the basaltic shergottite Yamato‐980459: Implications for the thermal structure of the Martian mantle , 2006 .

[44]  J. Filiberto,et al.  The Mars/Earth dichotomy in Mg/Si and Al/Si ratios: Is it real? , 2006 .

[45]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[46]  S. Smrekar,et al.  Relaxation of the Martian dichotomy boundary: Faulting in the Ismenius Region and constraints on the early evolution of Mars , 2005 .

[47]  L. Borg,et al.  The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites , 2005 .

[48]  Linda T. Elkins-Tanton,et al.  Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn , 2005 .

[49]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[50]  C. Agee,et al.  Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle , 2004 .

[51]  T. Burbine,et al.  Determining the possible building blocks of the Earth and Mars , 2004 .

[52]  Maria T. Zuber,et al.  Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios , 2004 .

[53]  G. Huss,et al.  Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula , 2003 .

[54]  L. Borg,et al.  A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .

[55]  Linda T. Elkins-Tanton,et al.  Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars , 2003 .

[56]  Y. Sano,et al.  Ion microprobe U‐Th‐Pb dating of phosphates in martian meteorite ALH 84001 , 2003 .

[57]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[58]  A. Kent,et al.  Near-solidus Melting of the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite , 2003 .

[59]  S. McLennan Large‐ion lithophile element fractionation during the early differentiation of Mars and the composition of the martian primitive mantle , 2003 .

[60]  J. Morgan,et al.  Highly siderophile elements in chondrites , 2003 .

[61]  John H. Jones,et al.  Signatures of the highly siderophile elements in the SNC meteorites and Mars: a review and petrologic synthesis , 2003 .

[62]  E. Deloule,et al.  Anomalously high δD values in the mantle , 2002 .

[63]  R. Phillips,et al.  Thermal and crustal evolution of Mars , 2002 .

[64]  John H. Jones,et al.  Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars , 2002 .

[65]  M. Norman Thickness and Composition of the Martian Crust Revisited: Implications of an Ultradepleted Mantle with a Nd Isotopic Composition Like that of QUE94201 , 2002 .

[66]  Mark S. Robinson,et al.  Ferrous oxide in Mercury's crust and mantle , 2001 .

[67]  R. Clayton,et al.  The Accretion, Composition and Early Differentiation of Mars , 2001 .

[68]  M. Wadhwa,et al.  Redox State of Mars' Upper Mantle and Crust from Eu Anomalies in Shergottite Pyroxenes , 2001, Science.

[69]  L. Leshin Insights into Martian water reservoirs from analyses of Martian meteorite QUE94201 , 2000 .

[70]  M. Norman The composition and thickness of the crust of Mars estimated from rare earth elements and neodymium‐isotopic compositions of Martian meteorites , 1999 .

[71]  A. Jambon,et al.  A simple chondritic model of Mars , 1999 .

[72]  Y. Fei,et al.  Implications of Mars Pathfinder data for the accretion history of the terrestrial planets. , 1998, Science.

[73]  K. Lodders A survey of shergottite, nakhlite and chassigny meteorites whole‐rock compositions , 1998 .

[74]  Y. Fei,et al.  Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars , 1998 .

[75]  M. Walter Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere , 1998 .

[76]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[77]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[78]  Y. Fei,et al.  Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .

[79]  Tilman Spohn,et al.  The interior structure of Mars: Implications from SNC meteorites , 1997 .

[80]  C. Wagner,et al.  Richterite-bearing peridotites and MARID-type inclusions in lavas from North Eastern Morocco: mineralogy and D/H isotopic studies , 1996 .

[81]  Jianzhong Zhang,et al.  Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone , 1996 .

[82]  J. Fitton,et al.  INCOMPATIBLE TRACE-ELEMENTS IN OIB AND MORB AND SOURCE ENRICHMENT IN THE SUB-OCEANIC MANTLE , 1995 .

[83]  W. McDonough,et al.  The composition of the Earth , 1995 .

[84]  A. Jambon Chapter 12. EARTH DEGASSING AND LARGE-SCALE GEOCHEMICAL CYCLING OF VOLATILE ELEMENTS , 1994 .

[85]  H. Wänke,et al.  Chemistry and accretion history of Mars , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[86]  T. Wagner,et al.  Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts , 1994 .

[87]  C. Graham The nature and scale of stable isotope disequilibrium in the mantle: ion and laser microprobe evidence , 1994 .

[88]  John R. Holloway,et al.  Volatiles in magmas , 1994 .

[89]  P. Beattie The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies , 1993 .

[90]  A. Thompson Water in the Earth's upper mantle , 1992, Nature.

[91]  G. Rossman,et al.  Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals , 1992, Science.

[92]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[93]  F. Albarède,et al.  Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks , 1991 .

[94]  G. Hanson An approach to trace element modeling using a simple igneous system as an example , 1989 .

[95]  T. Ahrens,et al.  Water storage in the mantle , 1989, Nature.

[96]  R. Hemley,et al.  Crystal chemistry of phase B and an anhydrous analogue: implications for water storage in the upper mantle , 1989, Nature.

[97]  D. Green,et al.  Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kb and Application to Basalt Petrogenesis , 1988 .

[98]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[99]  Barry L. Lutz,et al.  Deuterium on Mars: The Abundance of HDO and the Value of D/H , 1988, Science.

[100]  P. Michael The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism , 1988 .

[101]  D. Green,et al.  Anhydrous Partial Melting of Peridotite from 8 to 35 kb and the Petrogenesis of MORB , 1988 .

[102]  H. Wänke,et al.  Volatiles on Earth and Mars: A comparison , 1987 .

[103]  Yu. A. Surkov,et al.  Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. , 1987 .

[104]  H. Wanke Chemistry and accretion of Earth and Mars , 1987 .

[105]  J. Crisp Rates of magma emplacement and volcanic output , 1984 .

[106]  I. Kushiro,et al.  Melting of a dry peridotite at high pressures and basalt magma genesis , 1983 .

[107]  H. Wänke Constitution of terrestrial planets , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[108]  J W Morgan,et al.  Chemical composition of Earth, Venus, and Mercury. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[109]  John W. Morgan,et al.  Chemical composition of Mars , 1979 .

[110]  G. Dreibus,et al.  THE ABUNDANCES OF MAJOR, MINOR, AND TRACE ELEMENTS IN THE EARTH'S MANTLE AS DERIVED FROM PRIMITIVE ULTRAMAFIC NODULES. , 1979 .

[111]  Paul H. Warren,et al.  The origin of KREEP , 1979 .

[112]  Alfred Edward Ringwood,et al.  Origin of the Earth and Moon , 1979 .

[113]  Joshua R. Smith,et al.  The mantle of Mars: Some possible geological implications of its high density , 1978 .

[114]  E. Anders,et al.  Bulk compositions of the moon and earth, estimated from meteorites , 1974 .

[115]  Derek York,et al.  Least squares fitting of a straight line with correlated errors , 1968 .

[116]  B. Mason Composition of the Earth , 1966, Nature.