Detecting the anthropogenic influences on recent changes in ocean carbon uptake

Anthropogenic greenhouse gas emissions have modified the rate at which oceans have absorbed atmospheric CO2 over the last centuries through rising atmospheric CO2 and modifications in climate. However, there are still missing pieces in our understanding of the recent evolution of air-sea CO2 exchanges related to the magnitude of their response to anthropogenic forcings versus that controlled by the internal variability. Here, to detect and attribute anthropogenic influences on oceanic CO2 uptake between 1960 and 2005, we compare an ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model simulations forced by individual drivers to ocean-only model reconstructions. We demonstrate that the evolution of the global oceanic carbon sink over the last decades can be understood without invoking climate change, attributing rising atmospheric CO2 as prominent driver of the oceanic sink. Nonetheless, at regional scale, the influence of climate change on air-sea CO2 exchanges seems to emerge from the internal variability within the low-latitude oceans.

[1]  M. R. Allen,et al.  Checking for model consistency in optimal fingerprinting , 1999 .

[2]  G. Reverdin,et al.  Near-Surface Salinity as Nature’s Rain Gauge to Detect Human Influence on the Tropical Water Cycle , 2012 .

[3]  Galen A. McKinley,et al.  Global trends in surface ocean pCO2 from in situ data , 2013 .

[4]  N. Bates Multi-decadal uptake of carbon dioxide into subtropical mode water of the North Atlantic Ocean , 2011 .

[5]  F. Joos,et al.  Regional Impacts of Climate Change and Atmospheric CO2on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis , 2011 .

[6]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[7]  Atul K. Jain,et al.  The global carbon budget 1959-2011 , 2012 .

[8]  L. Bopp,et al.  Physical pathways for carbon transfers between the surface mixed layer and the ocean interior , 2013 .

[9]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[10]  A. Lenton,et al.  Impact of Historical Climate Change on the Southern Ocean Carbon Cycle , 2008 .

[11]  Jacqueline Boutin,et al.  An update to the Surface Ocean CO2 Atlas (SOCAT version 2) , 2013 .

[12]  Gian-Kasper Plattner,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming , 2001 .

[13]  Tsutomu Ikeda,et al.  Biogeochemical fluxes through mesozooplankton , 2006 .

[14]  Taro Takahashi,et al.  Global ocean carbon uptake: magnitude, variability and trends , 2012 .

[15]  Corinne Le Quéré,et al.  An international effort to quantify regional carbon fluxes , 2011 .

[16]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[17]  F. Morel,et al.  Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity , 2010 .

[18]  E. Buitenhuis,et al.  Biogeochemical fluxes through microzooplankton , 2010 .

[19]  Deborah K. Smith,et al.  A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications , 2011 .

[20]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[21]  R. Schnur,et al.  Ocean dynamics determine the response of oceanic CO2 uptake to climate change , 2008 .

[22]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[23]  N. Gruber,et al.  Changing controls on oceanic radiocarbon: New insights on shallow‐to‐deep ocean exchange and anthropogenic CO2 uptake , 2012 .

[24]  K. Lindsay,et al.  Multi‐decadal trends in the advection and mixing of natural carbon in the Southern Ocean , 2013 .

[25]  Nicholas R. Bates,et al.  Detecting regional anthropogenic trends in ocean acidification against natural variability , 2012 .

[26]  P. Stott,et al.  Estimating signal amplitudes in optimal fingerprinting, part I: theory , 2003 .

[27]  K. Lindsay,et al.  Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust , 2009 .

[28]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[29]  L. Bopp,et al.  Dynamical and biogeochemical control on the decadal variability of ocean carbon fluxes , 2012 .

[30]  C. Deser,et al.  Uncertainty in climate change projections: the role of internal variability , 2012, Climate Dynamics.

[31]  F. Joos,et al.  Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle–climate model ensemble , 2009 .

[32]  M. Ramonet,et al.  Recent acceleration of the sea surface fCO2 growth rate in the North Atlantic subpolar gyre (1993–2008) revealed by winter observations , 2010 .

[33]  Taka Ito,et al.  Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow , 2010, Nature.

[34]  Christoph Heinze,et al.  Long-term surface pCO2 trends from observations and models , 2014 .

[35]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[36]  A revised estimate of the processes contributing to global warming due to climate‐carbon feedback , 2009 .

[37]  S. Wijffels,et al.  Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000 , 2012, Science.

[38]  Daniele Iudicone,et al.  Water Mass Analysis of Effect of Climate Change on Air–Sea CO2Fluxes: The Southern Ocean , 2012 .

[39]  C. Heinze,et al.  Nonlinearity of Ocean Carbon Cycle Feedbacks in CMIP5 Earth System Models , 2014 .

[40]  Andrew J. Watson,et al.  A variable and decreasing sink for atmospheric CO2 in the North Atlantic , 2007 .

[41]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[42]  F. Joos,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming: Ocean carbon uptake , 2001 .

[43]  Taro Takahashi,et al.  Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales , 2011 .

[44]  S. Doney,et al.  Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink , 2008 .

[45]  S. Doney,et al.  Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades , 2008 .

[46]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[47]  Paul R. Houser,et al.  Scanning multichannel microwave radiometer snow water equivalent assimilation , 2007 .

[48]  A. Watson,et al.  Trends in North Atlantic sea-surface fCO2 from 1990 to 2006 , 2009 .

[49]  A. Watson,et al.  Monitoring and interpreting the ocean uptake of atmospheric CO2 , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Jean-Marc Molines,et al.  Eddy compensation and controls of the enhanced sea‐to‐air CO2 flux during positive phases of the Southern Annular Mode , 2013 .

[51]  Christoph Heinze,et al.  An isopycnic ocean carbon cycle model , 2009 .

[52]  Aurélien Ribes,et al.  Application of regularised optimal fingerprinting to attribution. Part I: method, properties and idealised analysis , 2013, Climate Dynamics.

[53]  M. Telszewski,et al.  Global data products help assess changes to ocean carbon sink , 2012 .