Projection methods for incompressible flow problems with WENO finite difference schemes

Weighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convection-diffusion equations 20. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several non-incremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.

[1]  Volker John,et al.  Analysis of the Pressure Stabilized Petrov-Galerkin Method for the Evolutionary Stokes Equations Avoiding Time Step Restrictions , 2015, SIAM J. Numer. Anal..

[2]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[3]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[4]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[5]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[6]  Mats G. Larson,et al.  An adaptive finite element splitting method for the incompressible Navier-Stokes equations , 2012, 1205.3096.

[7]  F. ARÀNDIGA,et al.  Analysis of WENO Schemes for Full and Global Accuracy , 2011, SIAM J. Numer. Anal..

[8]  Volker John,et al.  On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations , 2012, J. Comput. Phys..

[9]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[10]  Arthur Veldman,et al.  Bifurcation analysis of incompressible flow in a driven cavity , 2002 .

[11]  Julia S. Mullen,et al.  A Fifth Order Flux Implicit WENO Method , 2006, J. Sci. Comput..

[12]  V. John,et al.  A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations , 2006 .

[13]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[14]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[15]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[16]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[17]  Daniele A. Di Pietro,et al.  A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure , 2011, J. Comput. Phys..

[18]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[19]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[20]  Traian Iliescu,et al.  A numerical investigation of velocity-pressure reduced order models for incompressible flows , 2014, J. Comput. Phys..

[21]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[22]  R. Codina Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .

[23]  V. John,et al.  Adaptive time step control for the incompressible Navier-Stokes equations , 2010 .

[24]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[25]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[26]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[27]  Volker John,et al.  Time‐dependent flow across a step: the slip with friction boundary condition , 2006 .

[28]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[29]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[30]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[31]  Frédéric Gibou,et al.  A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive Quad/Octrees , 2015, J. Comput. Phys..

[32]  Rodolfo Ruben Rosales,et al.  An efficient method for the incompressible Navier-Stokes equations on irregular domains with no-slip boundary conditions, high order up to the boundary , 2010, J. Comput. Phys..

[33]  Gunar Matthies,et al.  International Journal for Numerical Methods in Fluids Higher-order Finite Element Discretizations in a Benchmark Problem for Incompressible Flows , 2022 .

[34]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .