Projection methods for incompressible flow problems with WENO finite difference schemes
暂无分享,去创建一个
[1] Volker John,et al. Analysis of the Pressure Stabilized Petrov-Galerkin Method for the Evolutionary Stokes Equations Avoiding Time Step Restrictions , 2015, SIAM J. Numer. Anal..
[2] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[3] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[4] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[5] R. Rannacher,et al. Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .
[6] Mats G. Larson,et al. An adaptive finite element splitting method for the incompressible Navier-Stokes equations , 2012, 1205.3096.
[7] F. ARÀNDIGA,et al. Analysis of WENO Schemes for Full and Global Accuracy , 2011, SIAM J. Numer. Anal..
[8] Volker John,et al. On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations , 2012, J. Comput. Phys..
[9] A. Prohl. Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .
[10] Arthur Veldman,et al. Bifurcation analysis of incompressible flow in a driven cavity , 2002 .
[11] Julia S. Mullen,et al. A Fifth Order Flux Implicit WENO Method , 2006, J. Sci. Comput..
[12] V. John,et al. A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations , 2006 .
[13] Chi-Wang Shu,et al. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..
[14] J. Kan. A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .
[15] R. Rannacher. On chorin's projection method for the incompressible navier-stokes equations , 1992 .
[16] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[17] Daniele A. Di Pietro,et al. A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure , 2011, J. Comput. Phys..
[18] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[19] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[20] Traian Iliescu,et al. A numerical investigation of velocity-pressure reduced order models for incompressible flows , 2014, J. Comput. Phys..
[21] Arthur Veldman,et al. Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .
[22] R. Codina. Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .
[23] V. John,et al. Adaptive time step control for the incompressible Navier-Stokes equations , 2010 .
[24] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[25] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[26] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[27] Volker John,et al. Time‐dependent flow across a step: the slip with friction boundary condition , 2006 .
[28] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .
[29] C. Bruneau,et al. The 2D lid-driven cavity problem revisited , 2006 .
[30] Jean-Luc Guermond,et al. International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .
[31] Frédéric Gibou,et al. A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive Quad/Octrees , 2015, J. Comput. Phys..
[32] Rodolfo Ruben Rosales,et al. An efficient method for the incompressible Navier-Stokes equations on irregular domains with no-slip boundary conditions, high order up to the boundary , 2010, J. Comput. Phys..
[33] Gunar Matthies,et al. International Journal for Numerical Methods in Fluids Higher-order Finite Element Discretizations in a Benchmark Problem for Incompressible Flows , 2022 .
[34] Gunar Matthies,et al. MooNMD – a program package based on mapped finite element methods , 2004 .