Application of the variational iteration method to nonlinear vibrations of nanobeams induced by the van der Waals force under different boundary conditions

[1]  M. Mohammadian Application of the Global Residue Harmonic Balance Method for Obtaining Higher-Order Approximate Solutions of a Conservative System , 2017 .

[2]  M. Shariati,et al.  Approximate analytical solutions to a conservative oscillator using global residue harmonic balance method , 2017 .

[3]  F. Ebrahimi,et al.  Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory , 2017 .

[4]  Masoud SoltanRezaee,et al.  Modeling the nonlinear pull-in behavior of tunable nano-switches , 2016 .

[5]  O. Martin A modified variational iteration method for the analysis of viscoelastic beams , 2016 .

[6]  F. Ebrahimi,et al.  Vibration analysis of nonlocal beams made of functionally graded material in thermal environment , 2016 .

[7]  F. Ebrahimi,et al.  Double nanoplate-based NEMS under hydrostatic and electrostatic actuations , 2016 .

[8]  S. Sadeghzadeh,et al.  Application of Higher Order Hamiltonian Approach to the Nonlinear Vibration of Micro Electro Mechanical Systems , 2016 .

[9]  M. Mojahedi,et al.  Static Deflection and Pull-In Instability of the Electrostatically Actuated Bilayer Microcantilever Beams , 2015 .

[10]  Lin Wang,et al.  Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory , 2015 .

[11]  Lin Wang,et al.  Surface effect on the pull-in instability of cantilevered nano-switches based on a full nonlinear model , 2015 .

[12]  Baolin Wang,et al.  A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature , 2015 .

[13]  A. Noghrehabadi,et al.  Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory , 2014 .

[14]  A. Yousefi-Koma,et al.  Chaos prediction in MEMS-NEMS resonators , 2014 .

[15]  A. Ohadi,et al.  Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam , 2014 .

[16]  Robert A. Van Gorder,et al.  Optimal analytic method for the nonlinear Hasegawa-Mima equation , 2014 .

[17]  Masoud Tahani,et al.  An alternative reduced order model for electrically actuated micro-beams under mechanical shock , 2014 .

[18]  S. Bagheri,et al.  DYNAMIC MODEL OF LARGE AMPLITUDE VIBRATION OF A UNI-FORM CANTILEVER BEAM CARRYING AN INTERMEDIATE LUMPED MASS AND ROTARY INERTIA , 2014 .

[19]  H. Sedighi,et al.  Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method , 2013 .

[20]  W. Zielichowski-Haber,et al.  Variational iterational method in stability analysis of beams under nonconservative forces , 2013 .

[21]  Esmail Hesameddini,et al.  Homotopy analysis method to obtain numerical solutions of the Painlevé equations , 2012 .

[22]  M. Baghani,et al.  Application of the variational iteration method for nonlinear free vibration of conservative oscillators , 2012 .

[23]  Mostafa Baghani,et al.  Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory , 2012 .

[24]  S. K. Lai,et al.  Analytical approximations to nonlinear vibration of an electrostatically actuated microbeam , 2012 .

[25]  Mohamadreza Abadyan,et al.  Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations , 2012 .

[26]  H. Ahmadian,et al.  Dynamic Analysis of Vibrating Systems with Nonlinearities , 2012 .

[27]  A. Kargar,et al.  Accurate analytical solutions to nonlinear oscillators by means of the Hamiltonian approach , 2011 .

[28]  Mahdi Bayat,et al.  Analytical study on the vibration frequencies of tapered beams , 2011 .

[29]  Yiming Fu,et al.  Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS) , 2011 .

[30]  Yucheng Liu,et al.  The use of He's variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam , 2009, Math. Comput. Model..

[31]  Mahdi Moghimi Zand,et al.  Semi-analytic solutions to nonlinear vibrations of microbeams under suddenly applied voltages , 2009 .

[32]  S. Chaterjee,et al.  A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams , 2009 .

[33]  Ji-Huan He Variational approach for nonlinear oscillators , 2007 .

[34]  A. Alasty,et al.  Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces , 2007 .

[35]  A. A. Soliman,et al.  New applications of variational iteration method , 2005 .

[36]  N. F. Smyth,et al.  A variational approach to the stability of an embedded NLS soliton at the edge of the continuum , 2005 .

[37]  Ya-Pu Zhao,et al.  Nonlinear behavior for nanoscale electrostatic actuators with Casimir force , 2005 .

[38]  Ji-Huan He A new approach to nonlinear partial differential equations , 1997 .

[39]  G. J. Maclay,et al.  The anharmonic Casimir oscillator (ACO)-the Casimir effect in a model microelectromechanical system , 1995 .

[40]  A. R. Askari,et al.  A frequency criterion for doubly clamped beam-type N/MEMS subjected to the van der Waals attraction , 2017 .

[41]  A. R. Askari,et al.  Analytical Approximations to Nonlinear Vibration of a Clamped Nanobeam in Presence of the Casimir Force , 2013 .