Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods

Two phylogenetic comparative methods, independent contrasts and generalized least squares models, can be used to determine the statistical relationship between two or more traits. We show that the two approaches are functionally identical and that either can be used to make statistical inferences about values at internal nodes of a phylogenetic tree (hypothetical ancestors), to estimate relationships between characters, and to predict values for unmeasured species. Regression equations derived from independent contrasts can be placed back onto the original data space, including computation of both confidence intervals and prediction intervals for new observations. Predictions for unmeasured species (including extinct forms) can be made increasingly accurate and precise as the specificity of their placement on a phylogenetic tree increases, which can greatly increase statistical power to detect, for example, deviation of a single species from an allometric prediction. We reexamine published data for basal metabolic rates (BMR) of birds and show that conventional and phylogenetic allometric equations differ significantly. In new results, we show that, as compared with nonpasserines, passerines exhibit a lower rate of evolution in both body mass and mass‐corrected BMR; passerines also have significantly smaller body masses than their sister clade. These differences may justify separate, clade‐specific allometric equations for prediction of avian basal metabolic rates.

[1]  K. Nagy,et al.  Energetics of free-ranging mammals, reptiles, and birds. , 1999, Annual review of nutrition.

[2]  W. C. Wozencraft,et al.  Phylogenetic Analysis of Recent Procyonid Genera , 1991 .

[3]  T. Garland,et al.  CHAPTER 13 – RECONSTRUCTING ANCESTRAL TRAIT VALUES USING SQUARED-CHANGE PARSIMONY: PLASMA OSMOLARITY AT THE ORIGIN OF AMNIOTES , 1997 .

[4]  E. Abouheif RANDOM TREES AND THE COMPARATIVE METHOD: A CAUTIONARY TALE , 1998, Evolution; international journal of organic evolution.

[5]  T. Garland,et al.  Evolutionary Physiology , 1926, Nature.

[6]  P. S. Reynolds,et al.  Phylogenetic Analysis of Avian Energetics: Passerines and Nonpasserines Do Not Differ , 1996, The American Naturalist.

[7]  P. Withers,et al.  Comparative Animal Physiology , 1992 .

[8]  T. Garland Rate Tests for Phenotypic Evolution Using Phylogenetically Independent Contrasts , 1992, The American Naturalist.

[9]  Ramón Díaz-Uriarte,et al.  TESTING HYPOTHESES OF CORRELATED EVOLUTION USING PHYLOGENETICALLY INDEPENDENT CONTRASTS: SENSITIVITY TO DEVIATIONS FROM BROWNIAN MOTION , 1996 .

[10]  A. Ives,et al.  Reptile Extinctions on Land‐Bridge Islands: Life‐History Attributes and Vulnerability to Extinction , 1999, The American Naturalist.

[11]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  L. Leemis Applied Linear Regression Models , 1991 .

[13]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[14]  Burt L. Monroe,et al.  A Supplement To Distribution And Taxonomy Of Birds Of The World , 1952 .

[15]  Jean Clobert,et al.  The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution , 1998 .

[16]  T. Garland,et al.  Effects of branch length errors on the performance of phylogenetically independent contrasts. , 1998, Systematic biology.

[17]  D. Swanson,et al.  Relationship of Basal to Summit Metabolic Rate in Passerine Birds and the Aerobic Capacity Model for the Evolution of Endothermy , 1996, Physiological Zoology.

[18]  S. Braude Phylogenies and the comparative method in animal behaviour , 1997 .

[19]  M. Benton Amniote origins: completing the transition to land , 1997 .

[20]  W. Calder Size, Function, and Life History , 1988 .

[21]  D. A. Gray Carotenoids and Sexual Dichromatism in North American Passerine Birds , 1996, The American Naturalist.

[22]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[23]  R. Bleiweiss,et al.  CONFIRMATION OF A PORTION OF THE SIBLEY-AHLQUIST "TAPESTRY" , 1995 .

[24]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[25]  D. Bauwens,et al.  A Comparative Study of the Relation between Heating Rates and Ambient Temperatures in Lacertid Lizards , 1996, Physiological Zoology.

[26]  Joseph B. Williams A PHYLOGENETIC PERSPECTIVE OF EVAPORATIVE WATER LOSS IN BIRDS , 1996 .

[27]  Todd H. Oakley,et al.  Reconstructing ancestral character states: a critical reappraisal. , 1998, Trends in ecology & evolution.

[28]  J. Weiner,et al.  Interspecific Allometries Are by-Products of Body Size Optimization , 1997, The American Naturalist.

[29]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[30]  E. Martins,et al.  Estimating ancestral states of a communicative display: a comparative study of Cyclura rock iguanas , 1998, Animal Behaviour.

[31]  E. Martins,et al.  PHYLOGENIES, SPATIAL AUTOREGRESSION, AND THE COMPARATIVE METHOD: A COMPUTER SIMULATION TEST , 1996, Evolution; international journal of organic evolution.

[32]  M. McPeek Testing Hypotheses About Evolutionary Change on Single Branches of a Phylogeny Using Evolutionary Contrasts , 1995, The American Naturalist.

[33]  D. Schluter,et al.  LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION , 1997, Evolution; international journal of organic evolution.

[34]  M. Pagel,et al.  Seeking the evolutionary regression coefficient: an analysis of what comparative methods measure. , 1993, Journal of theoretical biology.

[35]  Anthony R. Ives,et al.  An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values , 1999 .

[36]  M. Pagel Inferring evolutionary processes from phylogenies , 1997 .

[37]  T. Garland,et al.  Polytomies and phylogenetically independent contrasts: examination of the bounded degrees of freedom approach. , 1999, Systematic biology.

[38]  T. Garland,et al.  Polytomies in Comparative Analyses of Continuous Characters , 1993 .

[39]  A. Rambaut,et al.  Phylogenetic extinction rates and comparative methodology , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  Arthur E. Dunham,et al.  Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses , 1993 .

[41]  T. Garland,et al.  Why Not to Do Two-Species Comparative Studies: Limitations on Inferring Adaptation , 1994, Physiological Zoology.

[42]  G. Judge,et al.  The Theory and Practice of Econometrics , 1981 .

[43]  Jon E. Ahlquist,et al.  Phylogeny and Classification of the Birds: A Study in Molecular Evolution , 1991 .

[44]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[45]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[46]  T. Garland,et al.  PHYLOGENETIC ANALYSES OF THE CORRELATED EVOLUTION OF CONTINUOUS CHARACTERS: A SIMULATION STUDY , 1991, Evolution; international journal of organic evolution.

[47]  Peter Schmidt,et al.  The Theory and Practice of Econometrics , 1985 .

[48]  R. Vane-Wright,et al.  Phylogenetics and ecology , 1994 .

[49]  J. Clobert,et al.  Nest Predation and Avian Life-History Evolution in Europe Versus North America: A Possible Role of Humans? , 1996, The American Naturalist.

[50]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[51]  T. Bradley,et al.  Introduction to the Symposium: What is Evolutionary Physiology? , 1999 .

[52]  J. L. Gittleman,et al.  Truth or Consequences: Effects of Phylogenetic Accuracy on Two Comparative Methods , 1994 .

[53]  B. Monroe,et al.  A World Checklist of Birds , 1993 .

[54]  T. Garland,et al.  Sprint performance of phrynosomatid lizards, measured on a high‐speed treadmill, correlates with hindlimb length , 1999 .

[55]  T. Tregenza,et al.  Phylogenies and the Comparative Method in Animal Behaviour , 1997 .

[56]  R. Larsen An introduction to mathematical statistics and its applications / Richard J. Larsen, Morris L. Marx , 1986 .

[57]  F. Lapointe,et al.  DNA-DNA hybridization-based phylogeny for "higher" nonpasserines: reevaluating a key portion of the avian family tree. , 1994, Molecular phylogenetics and evolution.

[58]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[59]  R. J. Smith Degrees of freedom in interspecific allometry: an adjustment for the effects of phylogenetic constraint. , 1994, American journal of physical anthropology.

[60]  G. A Statistical Tests for Discrete Cross-species Data , 1996 .