5 – RNA Processing and Degradation by RNase III

[1]  D. Court,et al.  Locating essential Escherichia coli genes by using mini-Tn10 transposons: the pdxJ operon , 1992, Journal of bacteriology.

[2]  M. Izuhara,et al.  Processing in the 5' region of the pnp transcript facilitates the site-specific endonucleolytic cleavages of mRNA. , 1992, Nucleic acids research.

[3]  A. Nicholson,et al.  Molecular cloning and expression of the bacteriophage T7 0.7(protein kinase) gene. , 1992, Virology.

[4]  A. Panet,et al.  Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Kennell,et al.  Broad-specificity endoribonucleases and mRNA degradation in Escherichia coli , 1992, Journal of bacteriology.

[6]  D. Court,et al.  RNaselll activation of bacteriophage λ N synthesis , 1991 .

[7]  H. W. Chang,et al.  Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. , 1991, Virology.

[8]  M. Mathews,et al.  Adenovirus virus-associated RNA and translation control , 1991, Journal of virology.

[9]  L. Saif,et al.  Molecular analysis of the gene 6 from a porcine group C rotavirus that encodes the NS34 equivalent of group A rotaviruses. , 1991, Virology.

[10]  O. Miller,et al.  rRNA transcription rate in Escherichia coli , 1991, Journal of bacteriology.

[11]  P. Gros,et al.  TIK, a novel serine/threonine kinase, is recognized by antibodies directed against phosphotyrosine. , 1991, The Journal of biological chemistry.

[12]  R. Srivastava,et al.  Location of the RNA‐processing enzymes RNase III, RNase E and RNase P in the Eschenchia coli cell , 1991, Molecular microbiology.

[13]  Stanley N Cohen,et al.  The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo , 1991, Cell.

[14]  L. Krinke,et al.  The role of the OOP antisense RNA in coliphage λ development , 1991 .

[15]  A. Nicholson,et al.  A conserved sequence element in ribonuclease III processing signals is not required for accurate in vitro enzymatic cleavage. , 1991, Nucleic acids research.

[16]  S. Altuvia,et al.  Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda. , 1991, Journal of molecular biology.

[17]  B. Berkhout,et al.  Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. , 1991, Science.

[18]  E. Hajnsdorf,et al.  Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3' stabilizing stem and loop structure. , 1991, Journal of molecular biology.

[19]  P. Dennis,et al.  RNA polymerase activity may regulate transcription initiation and attenuation in the rplKAJLrpoBC operon in Escherichia coli. , 1991, The Journal of biological chemistry.

[20]  M. Yamamoto,et al.  S. pombe pac1+, whose overexpression inhibits sexual development, encodes a ribonuclease III‐like RNase. , 1991, The EMBO journal.

[21]  L. Krinke,et al.  RNase III-dependent hydrolysis of lambda cII-O gene mRNA mediated by lambda OOP antisense RNA. , 1990, Genes & development.

[22]  M. Grunberg‐Manago,et al.  RNase III cleavages in non-coding leaders of Escherichia coli transcripts control mRNA stability and genetic expression. , 1990, Biochimie.

[23]  R. Srivastava,et al.  Maturation of precursor 10Sa RNA in Escherichia coli is a two-step process: the first reaction is catalyzed by RNase III in presence of Mn2+. , 1990, Biochimie.

[24]  M. Wigler,et al.  A gene from S. pombe with homology to E. coli RNAse III blocks conjugation and sporulation when overexpressed in wild type cells. , 1990, Nucleic acids research.

[25]  L. Krinke,et al.  The cleavage specificity of RNase III. , 1990, Nucleic acids research.

[26]  J. Belasco,et al.  The ompA 5' untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency , 1990, Journal of bacteriology.

[27]  I. Kerr,et al.  Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon , 1990, Cell.

[28]  E. Wagner,et al.  Control of replication of plasmid R1: the duplex between the antisense RNA, CopA, and its target, CopT, is processed specifically in vivo and in vitro by RNase III. , 1990, The EMBO journal.

[29]  P. March,et al.  Characterization of the biochemical properties of recombinant ribonuclease III. , 1990, Nucleic acids research.

[30]  M. Faubladier,et al.  Escherichia coli cell division inhibitor DicF-RNA of the dicB operon. Evidence for its generation in vivo by transcription termination and by RNase III and RNase E-dependent processing. , 1990, Journal of molecular biology.

[31]  A. Nicholson,et al.  Protein kinase of bacteriophage T7 induces the phosphorylation of only a small number of proteins in the infected cell. , 1990, Virology.

[32]  R. Simons,et al.  The IS10 transposase mRNA is destabilized during antisense RNA control. , 1990, The EMBO journal.

[33]  P. Dennis,et al.  Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon , 1990, Journal of bacteriology.

[34]  D. Court,et al.  Expression and characterization of RNase III and Era proteins. Products of the rnc operon of Escherichia coli. , 1990, The Journal of biological chemistry.

[35]  N. Pace,et al.  The excision of intervening sequences from salmonella 23S ribosomal RNA , 1990, Cell.

[36]  S. Altuvia,et al.  Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. , 1989, Journal of molecular biology.

[37]  M. Grunberg‐Manago,et al.  Cleavage by RNase III in the transcripts of the met Y-nus-A-infB operon of Escherichia coli releases the tRNA and initiates the decay of the downstream mRNA. , 1989, Journal of molecular biology.

[38]  Y. Nakamura,et al.  Autoregulation of RNase III operon by mRNA processing. , 1989, The EMBO journal.

[39]  D. Schlessinger,et al.  Escherichia coli 16S rRNA 3′‐end formation requires a distal transfer RNA sequence at a proper distance. , 1989, The EMBO journal.

[40]  M. Izuhara,et al.  Differential degradation of the Escherichia coli polynucleotide phosphorylase mRNA. , 1989, Nucleic acids research.

[41]  D. Court,et al.  Temperature-sensitive lethal mutant of era, a G protein in Escherichia coli , 1989, Journal of bacteriology.

[42]  S. Lovett,et al.  Molecular analysis of the Escherichia coli recO gene , 1989, Journal of bacteriology.

[43]  P. I. Marcus,et al.  Double-stranded ribonuclease coinduced with interferon. , 1989, Science.

[44]  S. Altuvia,et al.  Genetic analysis of bacteriophage lambda cIII gene: mRNA structural requirements for translation initiation , 1989, Journal of bacteriology.

[45]  D. Court,et al.  Genetic analysis of the rnc operon of Escherichia coli , 1989, Journal of bacteriology.

[46]  A. Srivastava,et al.  Processing pathway of Escherichia coli 16S precursor rRNA. , 1989, Nucleic acids research.

[47]  Guy Plunkett,et al.  Retroregulation of the bacteriophage lambda int gene: limited secondary degradation of the RNase III-processed transcript , 1989, Journal of bacteriology.

[48]  G. Guarneros,et al.  Retroregulation of an int-lacZ gene fusion in a plasmid system. , 1988, Gene.

[49]  J. Belasco,et al.  Mechanisms of mRNA decay in bacteria: a perspective. , 1988, Gene.

[50]  F. Blattner,et al.  Q-mediated late gene transcription of bacteriophage lambda: RNA start point and RNase III processing sites in vivo. , 1988, Virology.

[51]  D. Schlessinger,et al.  Coregulation of processing and translation: mature 5' termini of Escherichia coli 23S ribosomal RNA form in polysomes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Inouye,et al.  Expression of double-stranded-RNA-specific RNase III of Escherichia coli is lethal to Saccharomyces cerevisiae , 1988, Journal of bacteriology.

[53]  M. Inouye,et al.  The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth. , 1988, Oncogene.

[54]  Ö. Melefors,et al.  Site-specific endonucleolytic cleavages and the regulation of stability of E. coli ompA mRNA , 1988, Cell.

[55]  Stanley N Cohen,et al.  An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability , 1988, Cell.

[56]  A. Nicholson,et al.  Accurate in vitro cleavage by RNase III of phosphorothioate-substituted RNA processing signals in bacteriophage T7 early mRNA. , 1988, Nucleic acids research.

[57]  M. Rosenberg,et al.  Bacteriophage lambda N gene leader RNA. RNA processing and translational initiation signals. , 1987, The Journal of biological chemistry.

[58]  L. Krinke,et al.  OOP RNA, produced from multicopy plasmids, inhibits lambda cII gene expression through an RNase III-dependent mechanism. , 1987, Genes & development.

[59]  S. Altuvia,et al.  RNase III stimulates the translation of the cIII gene of bacteriophage lambda. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Grunberg‐Manago,et al.  The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5′ end. , 1987, The EMBO journal.

[61]  P. Dennis,et al.  Transcription products from the rplKAJL-rpoBC gene cluster. , 1987, Journal of molecular biology.

[62]  Sarah F. Newbury,et al.  Stabilization of translationally active mRNA by prokaryotic REP sequences , 1987, Cell.

[63]  J. Dunn,et al.  Structure of secondary cleavage sites of E. coli RNAaseIII in A3t RNA from bacteriophage T7. , 1987, Nucleic acids research.

[64]  M. Inouye,et al.  A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Kennell,et al.  Specific endonucleolytic cleavage sites for decay of Escherichia coli mRNA. , 1986, Journal of molecular biology.

[66]  D. Court,et al.  Mutations of bacteriophage lambda that define independent but overlapping RNA processing and transcription termination sites. , 1986, Journal of molecular biology.

[67]  A. Honigman,et al.  Transcription termination and processing sites in the bacteriophage λ pL operon , 1986 .

[68]  M. Nasri,et al.  Relaxation of recognition sequence of specific endonuclease HindIII. , 1986, Nucleic acids research.

[69]  C. Portier,et al.  Initiation, attenuation and RNase III processing of transcripts from the Escherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. , 1986, Journal of molecular biology.

[70]  D. Schlessinger,et al.  Why is processing of 23 S ribosomal RNA in Escherichia coli not obligate for its function? , 1985, Journal of molecular biology.

[71]  T. Mukai,et al.  Attenuation and processing of RNA from the rpsO-pnp transcription unit of Escherichia coli. , 1985, Nucleic acids research.

[72]  D. Schlessinger,et al.  Ordered processing of Escherichia coli 23S rRNA in vitro. , 1985, Nucleic acids research.

[73]  Paul E. March,et al.  The DNA sequence of the gene (rnc) encoding ribonuclease III of Escherichia coli , 1985, Nucleic Acids Res..

[74]  T. Platt,et al.  Maturation of Escherichia coli tryptophan operon mRNA: evidence for 3′ exonucleolytic processing after rho‐dependent termination. , 1985, The EMBO journal.

[75]  N. Panayotatos,et al.  Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo. , 1985, Nucleic acids research.

[76]  R. Gourse,et al.  A mutation in an Escherichia coli ribosomal RNA operon that blocks the production of precursor 23 S ribosomal RNA by RNase III in vivo and in vitro. , 1985, Journal of molecular biology.

[77]  D. Apirion,et al.  Molecular cloning of the gene for the RNA-processing enzyme RNase III of Escherichia coli. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Stanley N Cohen,et al.  Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript , 1985, Cell.

[79]  J. Belasco,et al.  Growth-rate dependent regulation of mRNA stability in Escherichia coli , 1984, Nature.

[80]  C. Portier,et al.  Expression of the rpsO and pnp genes: structural analysis of a DNA fragment carrying their control regions. , 1984, Nucleic acids research.

[81]  D Court,et al.  Removal of a terminator structure by RNA processing regulates int gene expression. , 1984, Journal of molecular biology.

[82]  D. Court,et al.  Transcription terminator involved in the expression of the int gene of phage lambda. , 1984, Gene.

[83]  P. Dennis,et al.  Site specific deletions of regulatory sequences in a ribosomal protein-RNA polymerase operon in Escherichia coli. Effects on beta and beta' gene expression. , 1984, The Journal of biological chemistry.

[84]  J. Lake,et al.  Unusual rRNA-linked complex of 50S ribosomal subunits isolated from an Escherichia coli RNase III mutant , 1984, Journal of bacteriology.

[85]  S. Oliver,et al.  Purification and properties of a double-stranded ribonuclease from the yeast Saccharomyces cerevisiae. , 1983, European journal of biochemistry.

[86]  H. Whiteley,et al.  Purification and properties of a new bacillus subtilis RNA processing enzyme. Cleavage of phage SP82 mRNA and Bacillus subtilis precursor rRNA. , 1983, The Journal of biological chemistry.

[87]  D. Schlessinger,et al.  S1 nuclease mapping analysis of ribosomal RNA processing in wild type and processing deficient Escherichia coli. , 1983, The Journal of biological chemistry.

[88]  F. Studier,et al.  Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. , 1983, Journal of molecular biology.

[89]  D. Court,et al.  Deletion analysis of the retroregulatory site for the λint gene , 1983 .

[90]  M. Schweiger,et al.  RNase III is positively regulated by T7 protein kinase. , 1983, The Journal of biological chemistry.

[91]  L. Shapiro,et al.  Purification and characterization of an RNA processing enzyme from Caulobacter crescentus. , 1983, The Journal of biological chemistry.

[92]  Hugh D. Robertson,et al.  Escherichia coli ribonuclease III cleavage sites , 1982, Cell.

[93]  D. Court,et al.  Retroregulation: Control of gene expression from sites distal to the gene , 1982, Cell.

[94]  B. Prágai,et al.  Processing of bacteriophage T4 tRNAs. The role of RNAase III. , 1981, Journal of molecular biology.

[95]  C. Richardson,et al.  Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7 , 1981, Cell.

[96]  D. Apirion,et al.  Processing of procaryotic ribonucleic acid. , 1981, Microbiological reviews.

[97]  H. Lozeron,et al.  Multiple pathways of RNA processing and decay for the major leftward N- independent RNA transcript of coliphage lambda. , 1981, Virology.

[98]  D. Schindler,et al.  Retroregulation of the int gene of bacteriophage lambda: control of translation completion. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Mark L. Pearson,et al.  Protein degradation in E. coli: The ion mutation and bacteriophage lambda N and cll protein stability , 1981, Cell.

[100]  D. Apirion,et al.  The synthesis of some proteins is affected in RNA processing mutants of Escherichia coli. , 1980, Biochemical and biophysical research communications.

[101]  M. Belfort The cII-independent expression of the phage λ int gene in RNase III-defective E. coli , 1980 .

[102]  G. Barry,et al.  Attenuation and processing of RNA from the rplJL--rpoBC transcription unit of Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Richard A. Young,et al.  The ribonuclease III site flanking 23S sequences in the 30S ribosomal precursor RNA of E. coli , 1980, Cell.

[104]  D. A. Wilder,et al.  Differential modes of processing and decay for the major N-dependent RNA transcript of coliphage lambda. , 1979, Virology.

[105]  H. W. Schaup,et al.  In vivo transcriptionally coupled assembly of Escherichia coli ribosomal subunits. , 1979, Journal of molecular biology.

[106]  M. Kuwano,et al.  A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. , 1979, Journal of molecular biology.

[107]  D. Kennell,et al.  Altered mRNA metabolism in ribonuclease III-deficient strains of Escherichia coli , 1978, Journal of bacteriology.

[108]  R. Young,et al.  Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[109]  T. Ikemura,et al.  Some rRNA operons in E. coli have tRNA genes at their distal ends , 1978, Cell.

[110]  D. Schlessinger,et al.  RNase III cleavage of Escherichia coli rRNA precursors: fragment release and dependence on salt concentration. , 1978, Biochemistry.

[111]  O. Miller,et al.  Visualization of ribosomal ribonucleic acid synthesis in a ribonuclease III-Deficient strain of Escherichia coli , 1977, Journal of bacteriology.

[112]  J. Steitz,et al.  Two ribosome binding sites from the gene 0-3 messenger RNA of bacteriophages T7. , 1977, Journal of molecular biology.

[113]  S. Hall,et al.  Isolation and characterization of two enzymatic activities from chick embryos which degrade double-stranded RNA. , 1977, The Journal of biological chemistry.

[114]  J. Dunn,et al.  A nucleotide sequence from a ribonuclease III processing site in bacteriophage T7 RNA. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[115]  M. Rosenberg,et al.  Nucleotide sequence surrounding a ribonuclease III processing site in bacteriophage T7 RNA. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[116]  D. Apirion,et al.  Antitermination and absence of processing of the leftward transcript of coliphage lambda in the RNAase III-deficient host. , 1977, Journal of molecular biology.

[117]  H. Robertson,et al.  Cleavage of T4 species I ribonucleic acid by Escherichia coli ribonuclease III. , 1976, Nucleic acids research.

[118]  W. Szybalski,et al.  Processing of the major leftward mRNA of coliphage lambda. , 1976, Virology.

[119]  F. Studier,et al.  Effect of RNAase III, cleavage on translation of bacteriophage T7 messenger RNAs. , 1975, Journal of molecular biology.

[120]  D. Apirion,et al.  Mapping and characterization of a mutation in Escherichia coli that reduces the level of ribonuclease III specific for double-stranded ribonucleic acid , 1975, Journal of bacteriology.

[121]  F. Studier Genetic mapping of a mutation that causes ribonucleases III deficiency in Escherichia coli , 1975, Journal of bacteriology.

[122]  W. Zillig,et al.  In vivo and in vitro phosphorylation of DNA-dependent RNA polymerase of Escherichia coli by bacteriophage-T7-induced protein kinase. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[123]  J. Dunn,et al.  Ribonucleic acid processing activity of Escherichia coli ribonuclease III. , 1975, The Journal of biological chemistry.

[124]  F. Altruda,et al.  Role of precursor 16S RNA in assembly of E. coli 30S ribosomes , 1975, Nature.

[125]  R. Crouch Ribonuclease 3 does not degrade deoxyribonucleic acid-ribonucleic acid hybrids. , 1974, The Journal of biological chemistry.

[126]  F. Studier,et al.  Protein kinase induction in Escherichia coli by bacteriophage T7. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[127]  D. Schlessinger,et al.  Synthesis of a large precursor to ribosomal RNA in a mutant of Escherichia coli. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[128]  F. Studier,et al.  T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease 3. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[129]  F. Studier,et al.  T7 early RNAs are generated by site-specific cleavages. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[130]  E. Craig,et al.  Decay rates of different mRNA in E. coli and models of decay. , 1972, Nature: New biology.

[131]  P. Traub,et al.  Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30 s ribosomes studied in vitro. , 1969, Journal of molecular biology.

[132]  H D Robertson,et al.  Purification and properties of ribonuclease III from Escherichia coli. , 1968, The Journal of biological chemistry.

[133]  H. Robertson Escherichia coli ribonuclease III. , 1990, Methods in enzymology.

[134]  F. Sor,et al.  Retroregulation of the synthesis of ribosomal proteins L14 and L24 by feedback repressor S8 in Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. Simons,et al.  Biological regulation by antisense RNA in prokaryotes. , 1988, Annual review of genetics.

[136]  G. Guarneros Retroregulation of bacteriophage λ int gene expression , 1988 .

[137]  L. Gold,et al.  Posttranscriptional regulatory mechanisms in Escherichia coli. , 1988, Annual review of biochemistry.

[138]  D. Kennell CHAPTER 4 – The Instability of Messenger RNA in Bacteria , 1986 .

[139]  S. R. Kushner,et al.  Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[140]  D. Schlessinger,et al.  RNase III cleavage is obligate for maturation but not for function of Escherichia coli pre-23S rRNA. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[141]  H. Echols,et al.  Control of Integration and Excision , 1983 .

[142]  M. Gottesman,et al.  Lytic Mode of Lambda Development , 1983 .

[143]  D. Court,et al.  Posttranscriptional control of bacteriophage lambda gene expression from a site distal to the gene. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[144]  F. Studier,et al.  PROCESSING OF BACTERIOPHAGE T7 RNAs BY RNase III , 1979 .

[145]  H. Robertson Structure and Function of RNA Processing Signals , 1977 .

[146]  J. Ebel,et al.  A study of the mechanism of action of E. coli ribonuclease III , 1971 .