Magnetic beads as versatile tools for electrochemical DNA and protein biosensing.

Magnetic beads (MBs) are versatile tools in the separation of nucleic acids, proteins and other biomacromolecules, their complexes and cells. In this article recent application of MBs in electrochemical biosensing and particularly in the development of DNA hybridization sensors is reviewed. In these sensors MBs serve not only for separation but also as a platform for optimized DNA hybridization. A hybridization event is detected separately at another surface, which is an electrode. The detection is based either on the intrinsic DNA electroactivity or on various kinds of DNA labeling, including chemical modification, enzyme tags, nanoparticles, electroactive beads, etc., greatly amplifying the signals measured. In addition to DNA hybridization, other kinds of biosensing in combination with MBs, such as DNA-protein interactions, are reviewed.

[1]  E. Paleček,et al.  Determination of pseudouridine at submicromolar concentrations by cathodic stripping voltammetry at a mercury electrode , 1985 .

[2]  Joseph Wang,et al.  Amplified Electrical Transduction of DNA Hybridization Based on Polymeric Beads Loaded with Multiple Gold Nanoparticle Tags , 2004 .

[3]  H. Thorn Electrocatalytic DNA oxidation , 2004 .

[4]  Elizabeth M. Boon,et al.  Single-base mismatch detection based on charge transduction through DNA. , 1999, Nucleic acids research.

[5]  Shinobu Sato,et al.  Electrochemical gene detection based on supramolecular complex formation by ferrocenyl-β-cyclodextrin and adamantylnaphthalene diimide bound to double stranded DNA , 2004 .

[6]  Ronen Polsky,et al.  Genomagnetic electrochemical assays of DNA hybridization. , 2002, Talanta.

[7]  I. Willner,et al.  Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen--antibody or oligonucleotide--DNA sensing processes by the precipitation of an insoluble product on electrodes. , 2001, Analytical chemistry.

[8]  E. Paleček,et al.  Trace Measurements of RNA by Potentiometric Stripping Analysis at Carbon Paste Electrodes , 1995 .

[9]  Juergen Oster,et al.  Magnetic bead technology in viral RNA and DNA extraction from plasma minipools , 2005, Transfusion.

[10]  E. Paleček,et al.  Premelting changes in DNA conformation. , 1976, Progress in nucleic acid research and molecular biology.

[11]  E. Paleček,et al.  Electrochemical analysis of formation of polynucleotide complexes in solution and at electrode surfaces , 1997 .

[12]  A. Berger,et al.  High-throughput purification of viral RNA based on novel aqueous chemistry for nucleic acid isolation. , 2005, Clinical chemistry.

[13]  E. Paleček,et al.  Use of Solid Amalgam Electrodes in Nucleic Acid Analysis , 2002 .

[14]  Self-assembled monolayers of thiol-end-labeled DNA at mercury electrodes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[15]  Joseph Wang,et al.  Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. , 2003, The Analyst.

[16]  C. Buess-Herman,et al.  Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. , 2007, Biosensors & bioelectronics.

[17]  E. Paleček,et al.  A highly sensitive pulse-polarographic estimation of denatured deoxyribonucleic acid in native deoxyribonucleic acid samples. , 1966, Archives of biochemistry and biophysics.

[18]  M. Fojta,et al.  Voltammetry of Osmium End-Labeled Oligodeoxynucleotides at Carbon, Mercury, and Gold Electrodes , 2007 .

[19]  M. Fojta,et al.  "Multicolor" electrochemical labeling of DNA hybridization probes with osmium tetroxide complexes. , 2007, Analytical chemistry.

[20]  E. Paleček,et al.  Past, present and future of nucleic acids electrochemistry. , 2002, Talanta.

[21]  E. Paleček,et al.  Polarographic behaviour of native and denatured deoxyribonucleic acids. , 1966, Journal of molecular biology.

[22]  Itamar Willner,et al.  Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles , 2004 .

[23]  Joseph Wang,et al.  Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. , 2004, Journal of the American Chemical Society.

[24]  Federica Valentini,et al.  Magnetic tuning of the electrochemical reactivity through controlled surface orientation of catalytic nanowires. , 2006, Journal of the American Chemical Society.

[25]  E. Paleček,et al.  Changes in DNA secondary structure after x-irradiation. , 1971, Radiation research.

[26]  E. Paleček,et al.  Reaction of nucleic acid bases with the mercury electrode: determination of purine derivatives at submicromolar concentrations by means of cathodic stripping voltammetry. , 1980, Analytical biochemistry.

[27]  I. Shih,et al.  Purines Bearing Phenanthroline or Bipyridine Ligands and Their RuII Complexes in Position 8 as Model Compounds for Electrochemical DNA Labeling – Synthesis, Crystal Structure, Electrochemistry, Quantum Chemical Calculations, Cytostatic and Antiviral Activity , 2007 .

[28]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[29]  P. Muir,et al.  Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical specimens , 1993, Journal of clinical microbiology.

[30]  E. Paleček,et al.  Surface-attached molecular beacons light the way for DNA sequencing. , 2004, Trends in biotechnology.

[31]  Jian-Ping Cai,et al.  Development of a method for concentrating and purifying SARS coronavirus RNA by a magnetic bead capture system. , 2005, DNA and cell biology.

[32]  M. Marco,et al.  Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. , 2006, Analytical chemistry.

[33]  G. Rivas,et al.  Dual enzyme electrochemical coding for detecting DNA hybridization. , 2002, The Analyst.

[34]  D. Kuhlmeier,et al.  Sensitive electrochemical determination of unlabeled MutS protein and detection of point mutations in DNA. , 2004, Analytical chemistry.

[35]  Joseph Wang,et al.  Indium microrod tags for electrochemical detection of DNA hybridization. , 2003, Analytical chemistry.

[36]  A. Bard,et al.  Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres. , 2004, Analytical chemistry.

[37]  W. Kuhr,et al.  Capillary gel electrophoresis with sinusoidal voltammetric detection: a strategy to allow four-"color" DNA sequencing. , 2001, Analytical chemistry.

[38]  R. Kizek,et al.  DNA hybridization at microbeads with cathodic stripping voltammetric detection. , 2002, Talanta.

[39]  René Kizek,et al.  Determination of nanogram quantities of osmium-labeled single stranded DNA by differential pulse stripping voltammetry. , 2002, Bioelectrochemistry.

[40]  Mark W Grinstaff,et al.  DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. , 2004, Journal of the American Chemical Society.

[41]  Peter E. Nielsen,et al.  Reduction and Oxidation of Peptide Nucleic Acid and DNA at Mercury and Carbon Electrodes , 1999 .

[42]  I. Safarik,et al.  Large-scale separation of magnetic bioaffinity adsorbents , 2001, Biotechnology Letters.

[43]  J Justin Gooding,et al.  Multipotential electrochemical detection of primer extension reactions on DNA self-assembled monolayers. , 2004, Journal of the American Chemical Society.

[44]  D. Paine,et al.  Influence of microstructure on the electrochemical performance of tin-doped indium oxide film electrodes. , 2002, Analytical Chemistry.

[45]  Gustavo Rivas,et al.  Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor , 1997 .

[46]  M. Fojta,et al.  A Single‐Surface Electrochemical Biosensor for the Detection of DNA Triplet Repeat Expansion , 2006 .

[47]  M. Schmidt,et al.  Evaluation of an automated high‐volume extraction method for viral nucleic acids in comparison to a manual procedure with preceding enrichment , 2005, Vox sanguinis.

[48]  Frieder W. Scheller,et al.  Electrochemistry of nucleic acids and proteins : towards electrochemical sensors for genomics and proteomics , 2005 .

[49]  Kathryn L. Turner,et al.  “Electroactive Beads” for Ultrasensitive DNA Detection , 2003 .

[50]  E. Paleček Oszillographische polarographie der nucleinsäurekomponenten , 1960 .

[51]  Gustavo Rivas,et al.  Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrations , 1996 .

[52]  M. Fojta,et al.  Covalent Labeling of Nucleosides with VIII‐ and VI‐Valent Osmium Complexes , 2007 .

[53]  M. Fojta,et al.  Voltammetric behavior of DNA modified with osmium tetroxide 2,2'-bipyridine at mercury electrodes. , 2004, Bioelectrochemistry.

[54]  D. Caruana,et al.  Enzyme-Amplified Amperometric Detection of Hybridization and of a Single Base Pair Mutation in an 18 Base Oligonucleotide on a 7 µm Diameter Microelectrode , 1999 .

[55]  S. Mangru,et al.  Dynamic DNA hybridization on a chip using paramagnetic beads. , 1999, Analytical chemistry.

[56]  Two superhelix density-dependent DNA transitions detected by changes in DNA adsorption/desorption behavior. , 1998, Biochemistry.

[57]  W. Kuhr,et al.  Direct electrochemical detection of purine- and pyrimidine-based nucleotides with sinusoidal voltammetry. , 1997, Analytical chemistry.

[58]  S. T. Picraux,et al.  Magnetic movement of biological fluid droplets , 2007 .

[59]  R. Kizek,et al.  Two-surface strategy in electrochemical DNA hybridization assays: Detection of osmium-labeled target DNA at carbon electrodes , 2003 .

[60]  Â. de Luca Rebello Wagener,et al.  Ultratrace determination of adenine in the presence of copper by adsorptive stripping voltammetry. , 2001, Talanta.

[61]  Yun Xiang,et al.  Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. , 2006, Journal of the American Chemical Society.

[62]  Joseph Wang,et al.  Discrete microfluidics with electrochemical detection. , 2007, The Analyst.

[63]  Chad A Mirkin,et al.  Polymer-DNA hybrids as electrochemical probes for the detection of DNA. , 2005, Journal of the American Chemical Society.

[64]  Rene Kizek,et al.  Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS , 2007, Analytical and bioanalytical chemistry.

[65]  M. Fojta,et al.  Adsorption of peptide nucleic acid and DNA decamers at electrically charged surfaces. , 1997, Biophysical journal.

[66]  P. Patel,et al.  Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion , 1996, Science.

[67]  Guodong Liu,et al.  Electrochemical coding technology for simultaneous detection of multiple DNA targets. , 2003, Journal of the American Chemical Society.

[68]  H. Yowanto,et al.  Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. , 2001, Journal of the American Chemical Society.

[69]  Weihong Tan,et al.  Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. , 2006, Analytical chemistry.

[70]  Peter E. Nielsen,et al.  Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors , 1996 .

[71]  E. Paleček,et al.  Determination of nanogram quantities of osmium-labeled nucleic acids by stripping (inverse) voltammetry. , 1983, Analytical biochemistry.

[72]  I. Willner,et al.  Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. , 2002, Journal of the American Chemical Society.

[73]  Joseph Wang,et al.  Nanoparticle‐Based Electrochemical Bioassays of Proteins , 2007 .

[74]  Miroslav Fojta,et al.  Electrochemical detection of DNA triplet repeat expansion. , 2004, Journal of the American Chemical Society.

[75]  Jun Wang,et al.  Attachment of Ferrocene‐Capped Gold Nanoparticle/Streptavidin Conjugates onto Electrode Surfaces Covered with Biotinylated Biomolecules for Enhanced Voltammetric Analysis , 2004 .

[76]  M. Fojta,et al.  Constant Current Chronopotentiometric Stripping Analysis of Bioactive Peptides at Mercury and Carbon Electrodes , 1998 .

[77]  J. Rusling Biomolecular Films : Design, Function, and Applications , 2003 .

[78]  Colin F. Poole,et al.  Encyclopedia of analytical science , 1995 .

[79]  Rene Kizek,et al.  Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor , 2002 .

[80]  V. Diculescu,et al.  Voltammetric determination of all DNA nucleotides. , 2004, Analytical biochemistry.

[81]  J Wang,et al.  Real-time monitoring of enzymatic cleavage of nucleic acids using a quartz crystal microbalance. , 1999, Bioelectrochemistry and bioenergetics.

[82]  Jun Wang,et al.  Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. , 2003, Analytical chemistry.

[83]  E. Paleček Oszillographische Polarographie der Nucleinsäuren und ihrer Bestandteile , 2004, Naturwissenschaften.

[84]  V. Subramaniam,et al.  Sensitive Electrochemical Detection of Native and Aggregated α-Synuclein Protein Involved in Parkinson's Disease , 2004 .

[85]  G. Flechsig,et al.  Electrochemical detection of DNA hybridization by means of osmium tetroxide complexes and protective oligonucleotides. , 2007, Analytical chemistry.

[86]  A. Španová,et al.  Magnetic microparticulate carriers with immobilized selective ligands in DNA diagnostics , 2005 .

[87]  M. Isabel Pividori,et al.  Electrochemical Genosensing Based on Rigid Carbon Composites. A Review , 2005 .

[88]  S. Rutjes,et al.  Isolation and Detection of Enterovirus RNA from Large-Volume Water Samples by Using the NucliSens miniMAG System and Real-Time Nucleic Acid Sequence-Based Amplification , 2005, Applied and Environmental Microbiology.

[89]  J. Davidson,et al.  Progress in nucleic acid research , 1963 .

[90]  Joseph Wang,et al.  Amplified label-free electrical detection of DNA hybridization. , 2002, The Analyst.

[91]  J. Kiel,et al.  Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. , 2002, BioTechniques.

[92]  Michal Hocek,et al.  Ferrocene-modified purines as potential electrochemical markers: synthesis, crystal structures, electrochemistry and cytostatic activity of (ferrocenylethynyl)- and (ferrocenylethyl)purines. , 2004, Chemistry.

[93]  Joseph Wang,et al.  Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. , 2001, Analytical chemistry.

[94]  V. Vetterl,et al.  Microanalysis of oligodeoxynucleotides by cathodic stripping voltammetry at amalgam-alloy surfaces in the presence of copper ions. , 2006, Talanta.

[95]  E. Paleček,et al.  Oscillographic Polarography of Highly Polymerized Deoxyribonucleic Acid , 1960, Nature.

[96]  E. Paleček,et al.  Probing of DNA structure with osmium tetroxide,2,2'-bipyridine. Adduct-specific antibodies. , 1991, Nucleic acids research.

[97]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[98]  E. Paleček,et al.  Osmium tetroxide reactivity of DNA bases in nucleotide sequencing and probing of DNA structure. , 1991, General physiology and biophysics.

[99]  Craig A. Grimes,et al.  Encyclopedia of Sensors , 2006 .

[100]  M. Mascini,et al.  Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. , 2007, Analytical chemistry.

[101]  Martin Pumera,et al.  Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[102]  B. Limoges,et al.  Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA. , 2000, Analytical biochemistry.

[103]  M. Fojta,et al.  Voltammetric Determination of Adenine, Guanine, and DNA Using Liquid Mercury Free Polished Silver Solid Amalgam Electrode , 2004 .

[104]  G. Bayramoglu,et al.  Single‐Step Purification of Recombinant Thermus aquaticus DNA Polymerase Using DNA‐Aptamer Immobilized Novel Affinity Magnetic Beads , 2007, Biotechnology progress.

[105]  Itamar Willner,et al.  Photoelectrochemistry with Controlled DNA-Cross-Linked CdS Nanoparticle Arrays This research is supported by The U.S.-Israel Binational Science Foundation. The Max Planck Research Award for International Cooperation (I.W.) is gratefully acknowledged. , 2001, Angewandte Chemie.

[106]  G. Rivas,et al.  Encoded beads for electrochemical identification. , 2003, Analytical chemistry.

[107]  A. Heeger,et al.  An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. , 2006, Journal of the American Chemical Society.

[108]  Joseph Wang,et al.  An electrochemical RNA hybridization assay for detection of the fecal indicator bacterium Escherichia coli. , 2005, Marine pollution bulletin.

[109]  J Wang,et al.  Electrochemical biosensors for DNA hybridization and DNA damage. , 1998, Biosensors & bioelectronics.

[110]  R. Kizek,et al.  Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats. , 2004, Biosensors & bioelectronics.

[111]  R. Kizek,et al.  Voltammetric microanalysis of DNA adducts with osmium tetroxide,2,2'-bipyridine using a pyrolytic graphite electrode. , 2002, Talanta.

[112]  Guodong Liu,et al.  DNA-based amplified bioelectronic detection and coding of proteins. , 2004, Angewandte Chemie.

[113]  Alessandra Bonanni,et al.  Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodes , 2006 .

[114]  Y. Tor,et al.  Redox-active metal-containing nucleotides: synthesis, tunability, and enzymatic incorporation into DNA. , 2002, Journal of the American Chemical Society.

[115]  E. Ferapontova,et al.  Direct electrochemical oxidation of DNA on polycrystalline gold electrodes , 2003 .

[116]  S. Takenaka,et al.  Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA. , 1996, Nucleic acids research.

[117]  Ladislav Novotný,et al.  Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. , 2002, Analytical chemistry.

[118]  M. Fojta,et al.  Differential Pulsed Voltammetric Determination of RNA at the Picomole Level in the Presence of DNA and Nucleic Acid Components , 1994 .

[119]  E. Paleček,et al.  Interaction of Methylated Adenine Derivatives with the Mercury Electrode. , 1982 .

[120]  M. Fojta,et al.  Voltammetric Behavior of Osmium‐Labeled DNA at Mercury Meniscus‐Modified Solid Amalgam Electrodes. Detecting DNA Hybridization , 2006 .

[121]  A. Anne,et al.  3'-Ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry. , 2003, Journal of the American Chemical Society.

[122]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[123]  Clifford A. Hampel,et al.  The encyclopedia of electrochemistry , 1964 .

[124]  H. Yowanto,et al.  Uridine-Conjugated Ferrocene DNA Oligonucleotides: Unexpected Cyclization Reaction of the Uridine Base , 2000 .

[125]  M. Gonçalves,et al.  VOLTAMMETRIC STUDIES OF PURINE BASES AND PURINE NUCLEOSIDES WITH COPPER , 1996 .