The five bacterial lectins (PA-IL, PA-IIL, RSL, RS-IIL, and CV-IIL): interactions with diverse animal cells and glycoproteins.

[1]  D. Iluz,et al.  Analyses of diverse mammals’ milk and lactoferrin glycans using five pathogenic bacterial lectins , 2011 .

[2]  N. Gilboa‐Garber,et al.  Bacterial Lectins: Properties, Structure, Effects, Function and Applications , 2008 .

[3]  N. Hayashi,et al.  A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. , 2007, Glycobiology.

[4]  S. Iida,et al.  Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC , 2007, BMC Biotechnology.

[5]  T. Nakagawa,et al.  Biological function of fucosylation in cancer biology. , 2007, Journal of biochemistry.

[6]  A. Imberty,et al.  X‐ray Structures and Thermodynamics of the Interaction of PA‐IIL from Pseudomonas aeruginosa with Disaccharide Derivatives , 2007, ChemMedChem.

[7]  A. Imberty,et al.  Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. , 2007, Organic & biomolecular chemistry.

[8]  R. Roy,et al.  Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from Pseudomonas aeruginosa , 2007 .

[9]  Jan Adam,et al.  Engineering of PA-IIL lectin from Pseudomonas aeruginosa – Unravelling the role of the specificity loop for sugar preference , 2007, BMC Structural Biology.

[10]  J. Gu,et al.  Carbohydrate Binding Specificity of a Fucose-specific Lectin from Aspergillus oryzae , 2007, Journal of Biological Chemistry.

[11]  B. Lerrer,et al.  Honey and royal jelly, like human milk, abrogate lectin-dependent infection-preceding Pseudomonas aeruginosa adhesion , 2007, The ISME Journal.

[12]  Naoyuki Taniguchi,et al.  Crystal structure of mammalian α1,6-fucosyltransferase, FUT8 , 2007 .

[13]  A. K. Hansen,et al.  The mink as an animal model for Pseudomonas aeruginosa adhesion: binding of the bacterial lectins (PA-IL and PA-IIL) to neoglycoproteins and to sections of pancreas and lung tissues from healthy mink. , 2007, Microbes and infection.

[14]  R. Kucharski,et al.  Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. , 2006, Genome research.

[15]  S. Iida,et al.  Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies , 2006, Expert opinion on biological therapy.

[16]  A. M. Wu,et al.  Interactions of the fucose-specific Pseudomonas aeruginosa lectin, PA-IIL, with mammalian glycoconjugates bearing polyvalent Lewis(a) and ABH blood group glycotopes. , 2006, Biochimie.

[17]  K. Jaeger,et al.  Lectin-based affinity tag for one-step protein purification. , 2006, BioTechniques.

[18]  S. Diggle,et al.  The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. , 2006, Environmental microbiology.

[19]  Jan Adam,et al.  Unusual entropy-driven affinity of Chromobacterium violaceum lectin CV-IIL toward fucose and mannose. , 2006, Biochemistry.

[20]  A. K. Hansen,et al.  The galactophilic lectin (PA-IL, gene LecA) from Pseudomonas aeruginosa. Its binding requirements and the localization of lectin receptors in various mouse tissues. , 2006, Microbial pathogenesis.

[21]  M. Laskowski,et al.  Tracing the history of Galα1–4Gal on glycoproteins in modern birds , 2006 .

[22]  P. Molan The Evidence Supporting the Use of Honey as a Wound Dressing , 2006, The international journal of lower extremity wounds.

[23]  A. Imberty,et al.  Binding of different monosaccharides by lectin PA‐IIL from Pseudomonas aeruginosa: Thermodynamics data correlated with X‐ray structures , 2006, FEBS letters.

[24]  J. Šimúth,et al.  The immunostimulatory effect of the recombinant apalbumin 1-major honeybee royal jelly protein-on TNFalpha release. , 2006, International immunopharmacology.

[25]  A. Imberty,et al.  Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL). , 2006, Microbiology.

[26]  C. Levene,et al.  H-deficient Bombay and para-Bombay red blood cells are most strongly agglutinated by the galactophilic lectins of Aplysia and Pseudomonas aeruginosa that detect I and P1 antigens , 2006, Immunohematology.

[27]  P. Schramel,et al.  Trace and mineral elements in royal jelly and homeostatic effects. , 2005, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[28]  E. Lesman-Movshovich,et al.  Differential staining of Western blots of human secreted glycoproteins from serum, milk, saliva, and seminal fluid using lectins displaying diverse sugar specifities , 2005 .

[29]  A. Imberty,et al.  Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. , 2005, Current opinion in structural biology.

[30]  E. Lesman-Movshovich,et al.  Comparison of the Antimicrobial Adhesion Potential of Human Body Fluid Glycoconjugates Using Fucose-Binding Lectin (PA-IIL) of Pseudomonas aeruginosa and Ulex europaeus Lectin (UEA-I) , 2005, Current Microbiology.

[31]  M. Schachner,et al.  Pseudomonas aeruginosa lectins I and II and their interaction with human airway cilia , 2005, The Journal of Laryngology & Otology.

[32]  Michaela Wimmerová,et al.  The Fucose-binding Lectin from Ralstonia solanacearum , 2005, Journal of Biological Chemistry.

[33]  Michaela Wimmerová,et al.  Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. , 2005, The Biochemical journal.

[34]  G. Ruiz-Palacios,et al.  Human milk glycans protect infants against enteric pathogens. , 2005, Annual review of nutrition.

[35]  R. Cooper,et al.  The antibacterial activity of honey against coagulase-negative staphylococci. , 2005, The Journal of antimicrobial chemotherapy.

[36]  A. Prince,et al.  Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. , 2005, American journal of respiratory and critical care medicine.

[37]  R. Loris,et al.  Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. , 2005, Microbiology.

[38]  Xi Jiang,et al.  Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. , 2005, The Journal of nutrition.

[39]  D. Fortunato,et al.  Towards royal jelly proteome , 2005, Proteomics.

[40]  Jaroslav Koca,et al.  High affinity fucose binding of Pseudomonas aeruginosa lectin PA‐IIL: 1.0 Å resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches , 2004, Proteins: Structure, Function, and Bioinformatics.

[41]  A. Imberty,et al.  A new Ralstonia solanacearum high‐affinity mannose‐binding lectin RS‐IIL structurally resembling the Pseudomonas aeruginosa fucose‐specific lectin PA‐IIL , 2004, Molecular microbiology.

[42]  V. Azevedo,et al.  Chromobacterium violaceum genome: molecular mechanisms associated with pathogenicity. , 2004, Genetics and molecular research : GMR.

[43]  J. Šimúth,et al.  Immunochemical approach to detection of adulteration in honey: physiologically active royal jelly protein stimulating TNF-alpha release is a regular component of honey. , 2004, Journal of agricultural and food chemistry.

[44]  A. Imberty,et al.  Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. , 2004, Microbes and infection.

[45]  Michaela Wimmerová,et al.  Structural basis of calcium and galactose recognition by the lectin PA‐IL of Pseudomonas aeruginosa , 2003, FEBS letters.

[46]  N. Hayashi,et al.  Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. , 2003, Cancer research.

[47]  L. Wyns,et al.  Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. , 2003, Journal of molecular biology.

[48]  K. Nakajima,et al.  A New Fungal Lectin Recognizing α(1–6)-linked Fucose in the N-Glycan* , 2003, Journal of Biological Chemistry.

[49]  Anne Imberty,et al.  Crystal Structure of Fungal Lectin , 2003, Journal of Biological Chemistry.

[50]  E. Lesman-Movshovich,et al.  Pseudomonas aeruginosa lectin PA-IIL as a powerful probe for human and bovine milk analysis. , 2003, Journal of dairy science.

[51]  G. Ruiz-Palacios,et al.  Campylobacter jejuni Binds Intestinal H(O) Antigen (Fucα1, 2Galβ1, 4GlcNAc), and Fucosyloligosaccharides of Human Milk Inhibit Its Binding and Infection* , 2003, The Journal of Biological Chemistry.

[52]  J. Parton,et al.  Honey stimulates inflammatory cytokine production from monocytes. , 2003, Cytokine.

[53]  N. Gilboa-Garber,et al.  Blocking of Pseudomonas aeruginosa lectins by human milk glycans. , 2003, Canadian journal of microbiology.

[54]  Serge Pérez,et al.  Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients , 2002, Nature Structural Biology.

[55]  R. Cooper,et al.  The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. , 2002, The Journal of burn care & rehabilitation.

[56]  A. Imberty,et al.  Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins. , 2002, Journal of biochemistry.

[57]  Chin‐Yun Lee,et al.  Chromobacterium violaceum infection in children: a case of fatal septicemia with nasopharyngeal abscess and literature review. , 2002, The Pediatric infectious disease journal.

[58]  Hans-Joachim Gabius,et al.  Glycosciences: Status and Perspectives , 2002 .

[59]  T. Dam,et al.  Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. , 2002, Chemical reviews.

[60]  J. Weissenbach,et al.  Genome sequence of the plant pathogen Ralstonia solanacearum , 2002, Nature.

[61]  Y. Kimura,et al.  Occurrence of GalNAcβ1-4GlcNAc Unit in N-Glycan of Royal Jelly Glycoprotein , 2002, Bioscience, biotechnology, and biochemistry.

[62]  B. Lerrer,et al.  Interactions of Pseudomonas aeruginosa PA-IIL lectin with quail egg white glycoproteins. , 2001, Canadian journal of microbiology.

[63]  B. Lerrer,et al.  Interaction of Pseudomonas aeruginosa galactophilic lectin PA-IL with pigeon egg white glycoproteins. , 2001, FEMS immunology and medical microbiology.

[64]  J. R. Johnson,et al.  N-Glycan Structures from the Major Glycoproteins of Pigeon Egg White , 2001, The Journal of Biological Chemistry.

[65]  K. Khoo,et al.  Isolation and Characterization of Major Glycoproteins of Pigeon Egg White , 2001, The Journal of Biological Chemistry.

[66]  D. Sudakevitz,et al.  Usage of Aplysia lectin interactions with T antigen and poly-N-acetyllactosamine for screening of E. coli strains which bear glycoforms cross-reacting with cancer-associated antigens. , 2001, FEMS immunology and medical microbiology.

[67]  M. Plotkowski,et al.  Pseudomonas aeruginosa induces apoptosis in human endothelial cells. , 2000, Microbial pathogenesis.

[68]  S. Diggle,et al.  The Pseudomonas aeruginosa Lectins PA-IL and PA-IIL Are Controlled by Quorum Sensing and by RpoS , 2000, Journal of bacteriology.

[69]  D. Katcoff,et al.  Identification and characterization of pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. , 2000, FEMS immunology and medical microbiology.

[70]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[71]  J. Alverdy,et al.  The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. , 2000, Annals of surgery.

[72]  E. Carnevale,et al.  Use of specific sugars to inhibit bacterial adherence to equine endometrium in vitro. , 2000, American journal of veterinary research.

[73]  Y. Kimura,et al.  Structural Features of N-Glycans Linked to Royal Jelly Glycoproteins: Structures of high-mannose type, hybrid type, and biantennary type glycans , 2000, Bioscience, biotechnology, and biochemistry.

[74]  Eiji Miyoshi,et al.  The α1-6-fucosyltransferase gene and its biological significance , 1999 .

[75]  C. Levene,et al.  A comparison of the Aplysia lectin anti‐I specificity with human anti‐I and several other I‐detecting lectins , 1999, Transfusion.

[76]  D. Sudakevitz,et al.  The hemagglutinating activities of Pseudomonas aeruginosa lectins PA-IL and PA-IIL exhibit opposite temperature profiles due to different receptor types. , 1999, FEMS immunology and medical microbiology.

[77]  D. Sofer,et al.  ‘Subinhibitory’ Erythromycin Represses Production of Pseudomonas aeruginosa Lectins, Autoinducer and Virulence Factors , 1999, Chemotherapy.

[78]  D. Bhattacharya,et al.  The Family of Major Royal Jelly Proteins and Its Evolution , 1999, Journal of Molecular Evolution.

[79]  S. Degroote,et al.  Pseudomonas aeruginosa binds to neoglycoconjugates bearing mucin carbohydrate determinants and predominantly to sialyl-Lewis x conjugates. , 1999, Glycobiology.

[80]  S. Kirkeby,et al.  Binding Properties of the Galactose-detecting Lectin Pseudomonas aeruginosa Agglutinin (PA-IL) to Skeletal Muscle Fibres. Quantitative Precipitation and Precipitation Inhibition Assays , 1999, The Histochemical Journal.

[81]  H B Ding,et al.  Determination of chemical composition of commercial honey by near-infrared spectroscopy. , 1999, Journal of agricultural and food chemistry.

[82]  Y. Higashimoto,et al.  Ovalbumin in Developing Chicken Eggs Migrates from Egg White to Embryonic Organs while Changing Its Conformation and Thermal Stability* , 1999, The Journal of Biological Chemistry.

[83]  D. Sudakevitz,et al.  Cold-induced augmentation of I blood group antigen interactions with galactophilic lectins. , 1999, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[84]  D. Newburg Human milk glycoconjugates that inhibit pathogens. , 1999, Current medicinal chemistry.

[85]  Naoyuki Taniguchi,et al.  Gene expression of α1‐6 fucosyltransferase in human hepatoma tissues: A possible implication for increased fucosylation of α‐fetoprotein , 1998 .

[86]  J. Hanes,et al.  A family of major royal jelly proteins of the honeybee Apis mellifera L. , 1998, Cellular and Molecular Life Sciences CMLS.

[87]  A. Oren,et al.  Typing of halophilic Archaea and characterization of their cell surface carbohydrates by use of lectins. , 1998, FEMS microbiology letters.

[88]  J. Naismith,et al.  Concanavalin A distorts the  -GlcNAc-(1->2)-Man linkage of  -GlcNAc-(1->2)- -Man-(1->3)-[ -GlcNAc-(1->2)- -Man-(1->6)]-Man upon binding , 1998, Glycobiology.

[89]  G. Springer Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy , 1997, Journal of Molecular Medicine.

[90]  U. Schumacher,et al.  Pseudomonas aeruginosa II lectin stops human ciliary beating: therapeutic implications of fucose. , 1997, American journal of respiratory and critical care medicine.

[91]  S. Eda,et al.  Characterization of lactoferrin-binding proteins of human macrophage membrane: multiple species of lactoferrin-binding proteins with polylactosamine-binding ability. , 1997, Biological & pharmaceutical bulletin.

[92]  C. Levene,et al.  Differentiation between human red cells of Pk and p blood types using Pseudomonas aeruginosa PA‐I lectin , 1996, Transfusion.

[93]  E. Trafny,et al.  Modulation of Pseudomonas aeruginosa adherence to collagen type I and type II by carbohydrates. , 1995, FEMS immunology and medical microbiology.

[94]  G. Grant,et al.  Purified Pseudomonas aeruginosa PA-I lectin induces gut growth when orally ingested by rats. , 1995, FEMS immunology and medical microbiology.

[95]  J. Beuth,et al.  Importance of lectins for the prevention of bacterial infections and cancer metastases , 1995, Glycoconjugate Journal.

[96]  A. M. Saliba,et al.  Pseudomonas aeruginosa selective adherence to and entry into human endothelial cells , 1994, Infection and immunity.

[97]  D. Newburg,et al.  Oligosaccharides from human milk block binding and activity of the Escherichia coli heat-stable enterotoxin (STa) in T84 intestinal cells. , 1994, The Journal of nutrition.

[98]  C. Levene,et al.  PA-I and PA-II lectin interactions with the ABO(H) and P blood group glycosphingolipid antigens may contribute to the broad spectrum adherence ofPseudomonas aeruginosa to human tissues in secondary infections , 1994, Glycoconjugate Journal.

[99]  M. Plotkowski,et al.  Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture , 1994, Infection and immunity.

[100]  J. Beuth,et al.  Importance of lectins for the prevention of bacterial infections and cancer metastases. , 1994, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[101]  B. Lanne,et al.  Binding of the galactose-specificPseudomonas aeruginosa lectin, PA-I, to glycosphingolipids and other glycoconjugates , 1994, Glycoconjugate Journal.

[102]  D. Katcoff,et al.  Pseudomonas aeruginosa PA-I lectin gene molecular analysis and expression in Escherichia coli. , 1994, Biochimica et biophysica acta.

[103]  J. R. Johnson,et al.  Pigeon and Dove Eggwhite Protect Mice Against Renal Infection Due to P Fimbriated Escherichia coli , 1994, The American journal of the medical sciences.

[104]  R. Kannagi,et al.  Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. , 1993, Cancer research.

[105]  D. Katcoff,et al.  Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. , 1992, The Journal of biological chemistry.

[106]  Edward E. Southwick,et al.  Bees as Superorganisms: An Evolutionary Reality , 1992 .

[107]  N Garber,et al.  On the specificity of the D-galactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. , 1992, Biochimica et biophysica acta.

[108]  T. Hada,et al.  Enzymatic basis of sugar structures of α‐fetoprotein in hepatoma and hepatoblastoma cell lines: Correlation with activities of α1–6 fucosyltransferase and N‐acetylglucosaminyltransferases III and V , 1992, International journal of cancer.

[109]  R. Doyle,et al.  Cytoplasmic lectins contribute to the adhesion of Pseudomonas aeruginosa , 1991 .

[110]  A. Cravioto,et al.  Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. , 1991, The Journal of infectious diseases.

[111]  K. Yamamoto,et al.  The primary structures of two types of the Ulex europeus seed lectin. , 1991, Journal of biochemistry.

[112]  M. Du,et al.  Fucosyltransferases: Differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis , 1991, Hepatology.

[113]  R. Ramphal,et al.  Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1-3GlcNAc) or type 2 (Gal beta 1-4GlcNAc) disaccharide units , 1991, Infection and immunity.

[114]  B. Seed,et al.  Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. , 1990, Science.

[115]  D. Newburg,et al.  Fucosylated oligosaccharides of human milk protect suckling mice from heat-stabile enterotoxin of Escherichia coli. , 1990, The Journal of infectious diseases.

[116]  N. Kochibe,et al.  Primary structure of a fucose-specific lectin obtained from a mushroom, Aleuria aurantia. , 1990, Journal of biochemistry.

[117]  N. Gilboa‐Garber,et al.  Microbial lectin cofunction with lytic activities as a model for a general basic lectin role. , 1989, FEMS microbiology reviews.

[118]  N. Baker,et al.  Adherence of Pseudomonas aeruginosa to tracheal epithelium , 1989, Infection and immunity.

[119]  N. Gilboa‐Garber,et al.  Specificity of the fucose-binding lectin of Pseudomonas aeruginosa , 1987 .

[120]  N. Gilboa‐Garber,et al.  PA‐II, the L‐fucose and D‐mannose binding lectin of Pseudomonas aeruginosa stimulates human peripheral lymphocytes and murine splenocytes , 1987, FEBS letters.

[121]  J. Leibovici,et al.  Effect of lectins on tumorigenicity of AKR lymphoma cells of varying malignancy. , 1986, Anticancer research.

[122]  N. Sharon,et al.  Affinity of four immobilized Erythrina lectins toward various N-linked glycopeptides and related oligosaccharides. , 1986, Carbohydrate research.

[123]  L. Rozenszajn,et al.  Stimulation of peripheral lymphocytes from cancer patients and healthy subjects by Pseudomonas aeruginosa lectin , 1986 .

[124]  L. Hazlett,et al.  In vivo identification of sialic acid as the ocular receptor for Pseudomonas aeruginosa , 1986, Infection and immunity.

[125]  T. Lagergård,et al.  Inhibition of Attachment of Streptococcus pneumoniae and Haemophilus influenzae by Human Milk and Receptor Oligosaccharides , 1986 .

[126]  J. Peter-Katalinic,et al.  Primary structures and Lewis blood-group-dependent expression of major sialylated saccharides from mucus glycoproteins of human seminal plasma. , 1985, European journal of biochemistry.

[127]  N. Sharon,et al.  Contribution of hydrophobicity to hemagglutination reactions of Pseudomonas aeruginosa , 1985, Infection and immunity.

[128]  L. Mizrahi,et al.  Pseudomonas lectin PA-I detects hybrid product of blood group AB genes in saliva , 1985, Experientia.

[129]  N. Kochibe,et al.  Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. , 1985, The Journal of biological chemistry.

[130]  B. Iglewski,et al.  The contribution of exoproducts to virulence of Pseudomonas aeruginosa , 1985 .

[131]  N. Garber,et al.  The intracellular localization of Pseudomonas aeruginosa lectins. , 1983, Journal of general microbiology.

[132]  J. Kamerling,et al.  Structural study of the carbohydrate moiety of hen ovomucoid. Occurrence of a series of pentaantennary complex-type asparagine-linked sugar chains. , 1982, Journal of Biological Chemistry.

[133]  T. Ikenaka,et al.  Identification of the trimannosyl-chitobiose structure in sugar moieties of Japanese quail ovomucoid. , 1982, Journal of biochemistry.

[134]  H. Iwase,et al.  Ovalbumin subfractionation and individual difference in ovalbumin microheterogeneity. , 1981, The Journal of biological chemistry.

[135]  A. Heller,et al.  Interactions of Pseudomonas aeruginosa lectins with Escherichia coli strains bearing blood group determinants. , 1981, Journal of general microbiology.

[136]  L. Mizrahi,et al.  Binding of Pseudomonas aeruginosa Lectin to Rhizobium sp. , 1981 .

[137]  C. François-Gérard,et al.  Turtledove: a New Source of P1‐Like Material Cross‐Reacting with the Human Erythrocyte Antigen , 1980, Vox sanguinis.

[138]  N. Kochibe,et al.  Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. , 1980, Biochemistry.

[139]  Y. Sharabi,et al.  Increase of Growth Rate and Phagocytic Activity of Tetrahymena Induced By Pseudomonas Lectins , 1980 .

[140]  Y. Sharabi,et al.  Interactions of pseudomonas aeruginosa hemagglutinins with Euglena gracilis, Chlamydomonas reinhardi, and Tetrahymena pyriformis. , 1980, The Journal of protozoology.

[141]  J. Vliegenthart,et al.  Investigation by 360-MHz 1H-nuclear-magnetic-resonance spectroscopy and methylation analysis of the single glycan chain of chicken ovotransferrin. , 1979, European journal of biochemistry.

[142]  N. Gilboa‐Garber,et al.  Augmented osmotic hemolysis of human erythrocytes exposed to the galactosephilic lectin of Pseudomonas aeruginosa. , 1979, Israel journal of medical sciences.

[143]  Y. Sharabi,et al.  Mitogenic stimulation of human lymphocytes by Pseudomonas aeruginosa galactosephilic lectins , 1979 .

[144]  L. Mizrahi,et al.  Mannose-binding hemagglutinins in extracts of Pseudomonas aeruginosa. , 1977, Canadian Journal of Biochemistry.

[145]  Y. Inoue,et al.  Structural studies of two ovalbumin glycopeptides in relation to the endo-beta-N-acetylglucosaminidase specificity. , 1975, The Journal of biological chemistry.

[146]  L. Mizrahi,et al.  Purification of the galactose‐binding hemagglutinin of Pseudomonas aeruginosa by affinity column chromatography using sepharose , 1972, FEBS letters.

[147]  N. Gilboa-Garber Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. , 1972, Biochimica et biophysica acta.

[148]  N. Gilboa‐Garber Inhibition of broad spectrum hemagglutinin fromPseudomonas aeruginosa by D‐galactose and its derivatives , 1972, FEBS letters.

[149]  L. Mizrahi,et al.  Effect of acetylcholine on the osmotic fragility of papain-treated and untreated human red blood cells , 1972, Experientia.

[150]  C. Ballou,et al.  Studies on the structure of yeast mannan. I. Purification and some properties of an alpha-mannosidase from an arthrobacter species. , 1969, The Journal of biological chemistry.

[151]  F. Bosman Advances in Pathology , 1942, Revue medicale suisse.

[152]  R. Jankowska,et al.  Fucosylation of serum glycoproteins in lung cancer patients , 2005, Clinical chemistry and laboratory medicine.

[153]  B. Lerrer,et al.  Differential staining of Western blots of avian egg white glycoproteins using diverse lectins , 2002, Electrophoresis.

[154]  A. M. Wu,et al.  Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa. , 1998, Glycobiology.

[155]  J. Beuth,et al.  Inhibition of bacterial adhesion and infections by lectin blocking. , 1996, Advances in experimental medicine and biology.

[156]  M. Slifkin,et al.  Lectin-microorganism interactions , 1994 .

[157]  N. Gilboa-Garber,et al.  Effects of Pseudomonas aeruginosa PA-I and PA-II Lectins on Tumoral Cells , 1993 .

[158]  Hans-Joachim Gabius,et al.  Lectins and Glycobiology , 1993, Springer Laboratory.

[159]  P. A. Moritz,et al.  Bees as Superorganisms , 1992, Springer Berlin Heidelberg.

[160]  A. Hayward Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. , 1991, Annual review of phytopathology.

[161]  N. Gilboa‐Garber,et al.  Antitumoral effects of Pseudomonas aeruginosa lectins on Lewis lung carcinoma cells cultured in vitro without and with murine splenocytes. , 1991, Toxicon : official journal of the International Society on Toxinology.

[162]  A. L. Koch,et al.  The functions of autolysins in the growth and division of Bacillus subtilis. , 1987, Critical reviews in microbiology.

[163]  D. Mirelman Microbial lectins and agglutinins : properties and biological activity , 1986 .

[164]  D. Sudakevitz,et al.  Effect of Pseudomonas aeruginosa lectins on phagocytosis of Escherichia coli strains by human polymorphonuclear leucocytes. , 1982, Microbios.

[165]  N. Gilboa-Garber Pseudomonas aeruginosa lectins. , 1982, Methods in enzymology.

[166]  T. Bøg‐Hansen Lectins : biology, biochemistry, clinical biochemistry , 1981 .

[167]  Z. Malik,et al.  Lectin-bearing protoplasts of Pseudomonas aeruginosa induce capping in human peripheral blood lymphocytes. , 1981, Microbios.

[168]  T. Echigo,et al.  Chemical composition of royal jelly. , 1980 .

[169]  L. Mizrahi,et al.  Interaction of the mannosephilic lectins of Pseudomonas aeruginosa with luminous species of marine enterobacteria. , 1979, Microbios.

[170]  L. Mizrahi,et al.  Specific agglutination of Escherichia coli O128B12 by the mannose-binding proteins of Pseudomonas aeruginosa. , 1977, Microbios.