Entropy Rate and Maximum Entropy Methods for Countable Semi-Markov Chains

Abstract We are concerned with introducing entropy in the field of countable discrete-time semi-Markov process theory. We define the entropy of the finite distributions of the semi-Markov chain and obtain explicitly its entropy rate by extending the Shannon–McMillan–Breiman theorem to this class of non-stationary discrete-time processes. We also define the relative entropy rate between two semi-Markov chains. We then develop some maximum entropy methods for these processes.

[1]  B. McMillan The Basic Theorems of Information Theory , 1953 .

[2]  L. Breiman The Individual Ergodic Theorem of Information Theory , 1957 .

[3]  Lennart Carleson Two Remarks on the Basic Theorems of Information Theory. , 1958 .

[4]  Philip M. Anselone,et al.  Ergodic theory for discrete semi-Markov chains , 1960 .

[5]  L. Breiman Correction Notes: Correction to "The Individual Ergodic Theorem of Information Theory" , 1960 .

[6]  K. Chung A Note on the Ergodic Theorem of Information Theory , 1961 .

[7]  A. Albert Estimating the Infinitesimal Generator of a Continuous Time, Finite State Markov Process , 1962 .

[8]  Entropy of conservative transformations , 1967 .

[9]  Louis Sucheston,et al.  On convergence of information in spaces with infinite invariant measure , 1968 .

[10]  Ronald A. Howard,et al.  Dynamic Probabilistic Systems , 1971 .

[11]  A. Gut Stopped Random Walks: Limit Theorems and Applications , 1987 .

[12]  M. C. Dumitrescu Some informational properties of Markov pure-jump processes , 1988 .

[13]  Jerry M. Mendel,et al.  Optimal simultaneous detection and estimation of filtered discrete semi-Markov chains , 1988, IEEE Trans. Inf. Theory.

[14]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[15]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[16]  Nikolaos Limnios,et al.  ON THE ENTROPY FOR SEMI-MARKOV PROCESSES , 2003 .

[17]  Nikolaos Limnios,et al.  Discrete Time Semi-Markov Processes for Reliability and Survival Analysis — A Nonparametric Estimation Approach , 2004 .

[18]  V. Girardin Entropy Maximization for Markov and Semi-Markov Processes , 2004 .

[19]  Nikolaos Limnios,et al.  Discrete-Time Semi-Markov Model for Reliability and Survival Analysis , 2004 .

[20]  Valérie Girardin,et al.  On the Different Extensions of the Ergodic Theorem of Information Theory , 2005 .

[21]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .