Polyurethane fan-out channel waveguide array for high-resolution optical waveguide imaging

A channel waveguide array formed in a fan-out pattern is introduced as a means of enhancing optical waveguide focal plane resolution in integrated optical devices utilizing optical waveguide lenses. High optical resolution is obtained by having light propagating in a thin-film slab waveguide incident on a high-density array of channel waveguides. The width and spacing of these channel waveguides then taper to larger values in a fan-out pattern, eventually terminating at elements of a detector array. High spatial resolution can thus be obtained without making detector spacings too small. This avoids detector problems with regard to fabrication, cross talk, linearity and charge transfer efficiency. To fabricate the fan-out channel waveguide array, a new differential heating and photoresist lift-off process is presented which allows high resolution patterns to be reproducibly formed in polyurethane. Propagation of light from a HeNe laser in these fan-out channel waveguide arrays is demonstrated with only a small amount of scattering. Low scattering is consistent with the smooth channel waveguide surfaces apparent in scanning electron microscope pictures presented.

[1]  J. Goodman Introduction to Fourier optics , 1969 .

[2]  J.T. Boyd,et al.  Parallel signal injection in a CCD using an integrated optical channel waveguide array , 1978, IEEE Transactions on Electron Devices.

[3]  E. Marcatili Bends in optical dielectric guides , 1969 .

[4]  Marvin H. White Photodiode Sensor Arrays , 1976 .

[5]  J. F. Randolph Calculus and analytic geometry , 1965 .

[6]  D. W. Widmann Metallization for integrated circuits using a lift-off technique , 1976 .

[7]  D. Marcuse Light transmission optics , 1972 .

[8]  S. K. Yao,et al.  Shadow sputtered diffraction‐limited waveguide Luneburg lenses , 1978 .

[9]  C. S. Tsai,et al.  High−performance acousto−optic guided−light−beam device using two tilting surface acoustic waves , 1975 .

[10]  D. H. Seib,et al.  Carrier diffusion degradation of modulation transfer function in charge coupled imagers , 1974 .

[11]  J. Carruthers,et al.  Optical waveguiding layers in LiNbO3 and LiTaO3 , 1973 .

[12]  R. Newman,et al.  Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K , 1955 .

[13]  I. Kaminow,et al.  Metal‐diffused optical waveguides in LiNbO3 , 1974 .

[14]  J. Boyd,et al.  An integrated-optical approach to the Fourier transform , 1977, IEEE Journal of Quantum Electronics.

[15]  E. A. J. Marcatili,et al.  Dielectric rectangular waveguide and directional coupler for integrated optics , 1969 .

[16]  R. Schmidt,et al.  II. Acoustooptic Interactions Between Guided Optical Waves and Acoustic Surface Waves , 1976, IEEE Transactions on Sonics and Ultrasonics.

[17]  K. Mukai,et al.  Planar multilevel interconnection technology employing a polyimide , 1978 .

[18]  R. Ulrich,et al.  Solution-deposited thin films as passive and active light-guides. , 1972, Applied optics.

[19]  Theoretical modeling of the simultaneous exposure and development (SED) process of a positive photoresist. , 1977, Applied optics.

[20]  Emanuel Marom,et al.  Diffraction‐limited geodesic lens for integrated optics circuits , 1978 .

[21]  C. Tseng,et al.  Optical waveguides fabricated by preferential etching. , 1975, Applied optics.

[22]  Simultaneous exposure and development of photoresist materials: an analytical model. , 1977, Applied optics.

[23]  C. Chen,et al.  An integrated optical waveguide and charge-coupled-device image array , 1977, IEEE Journal of Quantum Electronics.

[24]  Theodore I. Kamins,et al.  Photosensing arrays with improved spatial resolution , 1978 .

[25]  A Thin‐Film Ring Laser , 1971 .

[26]  J. Boyd,et al.  Comparison of optical-waveguide lens technologies , 1977, IEEE Journal of Quantum Electronics.

[27]  M. Tacke,et al.  Properties of polymeric thin films by integrated optical techniques , 1977 .

[28]  Shyh Wang,et al.  Simultaneous exposure and development technique for making gratings on positive photoresist , 1974 .

[29]  S. G. Chamberlain,et al.  MTF simulation including transmittance effects and experimental results of charge-coupled imagers , 1978 .

[30]  R. Ulrich,et al.  Theory of the Prism–Film Coupler by Plane-Wave Analysis , 1970 .

[31]  P. Tien Light waves in thin films and integrated optics. , 1971, Applied optics.

[32]  Totally internally reflecting thin-film optical cavities. , 1972, Applied optics.

[33]  P. K. Tien,et al.  Theory of Prism–Film Coupler and Thin-Film Light Guides , 1970 .

[34]  Seiki Harada,et al.  A Novel Planar Multilevel Interconnection Technology Utilizing Polyimide , 1973 .