On the Advantages of Periodic Excitation in System Identification

Abstract In this paper it is shown that periodic excitations offer significant advantages in system identification compared to noise excitation The influence on the uncertainty of the estimates, the model validation problem, initial state estimate and the frequency range of the measurements is analysed and illustrated.

[1]  Johan Schoukens,et al.  Survey of excitation signals for FFT based signal analyzers , 1988 .

[2]  Keith R. Godfrey,et al.  Correlation methods , 1980, Autom..

[3]  K. Godfrey The Theory of the Correlation Method of Dynamic Analysis and its Application to Industrial Processes and Nuclear Power Plant , 1969 .

[4]  Manfred R. Schroeder,et al.  Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[5]  K. R. Godfrey,et al.  Introduction to binary signals used in system identification , 1991 .

[6]  Lennart Ljung,et al.  Frequency domain versus time domain methods in system identification , 1981, Autom..

[7]  Rik Pintelon,et al.  Design of broadband excitation signals , 1993 .

[8]  J. Schoukens,et al.  Nonparametric frequency response function estimators based on nonlinear averaging techniques , 1992 .

[9]  J. Schoukens,et al.  Peak factor minimization using a time-frequency domain swapping algorithm , 1988 .

[10]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[11]  Heinrich Rake,et al.  Binary Multifrequency Signals - Synthesis and Application , 1979 .

[12]  Rik Pintelon,et al.  Discrete-time modeling and identification of continuous-time systems: a general framework , 1991 .

[13]  A. Bos,et al.  Synthesis of discrete-interval binary signals with specified Fourier amplitude spectra , 1979 .

[14]  Martin B. Zarrop,et al.  Optimal experiment design for dynamic system identification , 1977 .