Thermal conductivity of a cubic lattice of spheres with capillary bridges

There have been many attempts to develop expressions for thermal conductivity (λ) as a function of liquid content (θ) in granular media such as powders, gravel and soil. We present a new approach based upon a cubic array of solid spheres, with liquid capillary bridges surrounding the solid–solid contacts. Numerical results agree with analytical solutions for the endpoints. For small filling angles (low liquid contents, such that menisci do not coalesce) and for a fixed conductivity ratio α ≡ λsolid/λliquid = λliquid/λgas, we find a simple relationship λ (θ) = λ (θ = 0) + aθb, where the prefactor and exponent are simple functions of α. The power-law relationship also holds for compressed spheres, if the dry conductivity λ (θ = 0) is adjusted for the new porosity. While the results are not trivially applicable to real granular media, they provide a quantitative explanation for the observed phenomenon in soils of the rapid rise in conductivity caused by the addition of a small volume of liquid.

[1]  D. Singh,et al.  Generalized relationships for estimating soil thermal resistivity , 2000 .

[2]  W. C. Krumbein Measurement and geological significance of shape and roundness of sedimentary particles , 1941 .

[3]  Rintoul,et al.  Effect of the interface on the properties of composite media. , 1995, Physical review letters.

[4]  D. R. McKenzie,et al.  The conductivity of lattices of spheres I. The simple cubic lattice , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  S. Kirkpatrick Percolation and Conduction , 1973 .

[6]  Marc F. P. Bierkens,et al.  UPSCALING HYDRAULIC CONDUCTIVITY : THEORY AND EXAMPLES FROM GEOHYDROLOGICAL STUDIES , 1998 .

[7]  Philippe Cosenza,et al.  Relationship between thermal conductivity and water content of soils using numerical modelling , 2003 .

[8]  George R. Blake,et al.  Thermal Properties of Soils , 1950 .

[9]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[10]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[11]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[12]  D. Vries Thermal properties of soils , 1963 .

[13]  Andreas Acrivos,et al.  The effective conductivity of a periodic array of spheres , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  G. Batchelor,et al.  Thermal or electrical conduction through a granular material , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  W. H. Leong,et al.  Thermal Conductivity of Soils at Very Low Moisture Content and Moderate Temperatures , 2000 .

[16]  M. Bierkens,et al.  Upscaling hydraulic conductivity: theory and examples from geohydrological studies , 2004, Nutrient Cycling in Agroecosystems.

[17]  W. Rose Volumes and Surface Areas of Pendular Rings , 1958 .

[18]  A. Gemant The Thermal Conductivity of Soils , 1950 .

[19]  S. Corasaniti,et al.  Experimental Measurements and Theoretical Prediction of the Thermal Conductivity of Two- and Three-Phase Water/Olivine Systems , 2003 .

[20]  B. Wang,et al.  A model for the thermal conductivity of unconsolidated porous media based on capillary pressure–saturation relation , 2001 .

[21]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[22]  Timothy D. Scheibe,et al.  Scaling of flow and transport behavior in heterogeneous groundwater systems , 1998 .

[23]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[24]  A. Moosavi,et al.  The effective conductivity of composite materials with cubic arrays of multi-coated spheres , 2003 .

[25]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[26]  F. Bisschop,et al.  A physical model for liquid capillary bridges between adsorptive solid spheres: The nodoid of plateau , 1982 .

[27]  G. Milton The Theory of Composites , 2002 .

[28]  F. Štěpánek,et al.  Effective thermal conductivity of wet particle assemblies , 2004 .

[29]  V. R. Tarnawski,et al.  Enhancement of the cubic cell soil thermal conductivity model , 2002 .

[30]  Graeme W. Milton,et al.  Bounds on the Electromagnetic, Elastic, and Other Properties of Two-Component Composites , 1981 .

[31]  Robert Horton,et al.  An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature , 2007 .

[32]  D. Singh,et al.  A generalised relationship between soil electrical and thermal resistivities , 2001 .