Comodulation masking release in bottlenose dolphins (Tursiops truncatus).

The acoustic environment of the bottlenose dolphin often consists of noise where energy across frequency regions is coherently modulated in time (e.g., ambient noise from snapping shrimp). However, most masking studies with dolphins have employed random Gaussian noise for estimating patterns of masked thresholds. The current study demonstrates a pattern of masking where temporally fluctuating comodulated noise produces lower masked thresholds (up to a 17 dB difference) compared to Gaussian noise of the same spectral density level. Noise possessing wide bandwidths, low temporal modulation rates, and across-frequency temporal envelope coherency resulted in lower masked thresholds, a phenomenon known as comodulation masking release. The results are consistent with a model where dolphins compare temporal envelope information across auditory filters to aid in signal detection. Furthermore, results suggest conventional models of masking derived from experiments using random Gaussian noise may not generalize well to environmental noise that dolphins actually encounter.

[1]  C. E. Schlundt,et al.  Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones. , 2000, The Journal of the Acoustical Society of America.

[2]  P. Moore,et al.  The critical interval in dolphin echolocation: what is it? , 1984, The Journal of the Acoustical Society of America.

[3]  Joseph W. Hall,et al.  Detection in noise by spectro-temporal pattern analysis. , 1984, The Journal of the Acoustical Society of America.

[4]  J H Grose,et al.  Comodulation masking release: evidence for multiple cues. , 1988, The Journal of the Acoustical Society of America.

[5]  C. S. Johnson,et al.  Auditory Masking of One Pure Tone by Another in the Bottlenosed Porpoise , 1971 .

[6]  E. Mercado,et al.  Representing multiple discrimination cues in a computational model of the bottlenose dolphin auditory system. , 2007, The Journal of the Acoustical Society of America.

[7]  V. Richards,et al.  The incorporation of level and level-invariant cues for the detection of a tone added to noise. , 1993, The Journal of the Acoustical Society of America.

[8]  James J Finneran,et al.  Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones. , 2005, The Journal of the Acoustical Society of America.

[9]  P. E. Nachtigall,et al.  Modulation rate transfer functions to low-frequency carriers in three species of cetaceans , 1995, Journal of Comparative Physiology A.

[10]  R. Patterson Auditory filter shapes derived with noise stimuli. , 1976, The Journal of the Acoustical Society of America.

[11]  W. John Richardson,et al.  CHAPTER 7 – MARINE MAMMAL SOUNDS1 , 1995 .

[12]  C. S. Johnson Masked tonal thresholds in the bottlenosed porpoise. , 1968, The Journal of the Acoustical Society of America.

[13]  J. Mott,et al.  Neural correlates of psychophysical release from masking. , 1990, The Journal of the Acoustical Society of America.

[14]  B G Berg On the relation between comodulation masking release and temporal modulation transfer functions. , 1996, The Journal of the Acoustical Society of America.

[15]  J. Pepper,et al.  Whistle Convergence among Allied Male Bottlenose Dolphins (Delphinidae, Tursiops sp.) , 1999 .

[16]  Israel Nelken,et al.  Responses of auditory-cortex neurons to structural features of natural sounds , 1999, Nature.

[17]  W. Au,et al.  The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay , 1998 .

[18]  E Mercado,et al.  Environmental constraints on sound transmission by humpback whales. , 1998, The Journal of the Acoustical Society of America.

[19]  H. Roitblat,et al.  Psychoacoustic Studies of Dolphin and Whale Hearing , 2000 .

[20]  V. Janik,et al.  Whistle matching in wild bottlenose dolphins (Tursiops truncatus) , 2000, Science.

[21]  R. Kastelein,et al.  Receiving beam patterns in the horizontal plane of a harbor porpoise (Phocoena phocoena). , 2005, The Journal of the Acoustical Society of America.

[22]  Diana Reiss,et al.  The fallacy of ‘signature whistles’ in bottlenose dolphins: a comparative perspective of ‘signature information’ in animal vocalizations , 2001, Animal Behaviour.

[23]  James J Finneran,et al.  Auditory filter shapes for the bottlenose dolphin (Tursiops truncatus) and the white whale (Delphinapterus leucas) derived with notched noise. , 2002, The Journal of the Acoustical Society of America.

[24]  D. McFadden,et al.  Comodulation masking release: effects of varying the level, duration, and time delay of the cue band. , 1986, The Journal of the Acoustical Society of America.

[25]  W A Yost,et al.  Across-critical-band processing of amplitude-modulated tones. , 1989, The Journal of the Acoustical Society of America.

[26]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[27]  S Buus,et al.  Release from masking caused by envelope fluctuations. , 1985, The Journal of the Acoustical Society of America.

[28]  P. Corkeron,et al.  Ranging and diving behaviour of two ‘offshore’ bottlenose dolphins, Tursiops sp., off eastern Australia , 2004, Journal of the Marine Biological Association of the United Kingdom.

[29]  Whitlow W. L. Au,et al.  Target Detection in Noise by Echolocating Dolphins , 1990 .

[30]  Brian C. J. Moore,et al.  Frequency Analysis and Pitch Perception , 1993 .

[31]  D. Houser,et al.  Comparison of in-air evoked potential and underwater behavioral hearing thresholds in four bottlenose dolphins (Tursiops truncatus). , 2006, The Journal of the Acoustical Society of America.

[32]  P W Moore,et al.  Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin. , 1990, The Journal of the Acoustical Society of America.

[33]  C. E. Schlundt,et al.  Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool. , 2007, The Journal of the Acoustical Society of America.

[34]  J H Grose,et al.  Effects of flanking band proximity, number, and modulation pattern on comodulation masking release. , 1990, The Journal of the Acoustical Society of America.

[35]  W. Au,et al.  Receiving beam patterns and directivity indices of the Atlantic bottlenose dolphin Tursiops truncatus. , 1984, The Journal of the Acoustical Society of America.

[36]  D. M. Green,et al.  Auditory Intensity Discrimination , 1993 .

[37]  B. Berg A temporal model of level-invariant, tone-in-noise detection. , 2004, Psychological review.

[38]  A. Nieder,et al.  Release from masking in fluctuating background noise in a songbird's auditory forebrain , 2001, Neuroreport.

[39]  D. Houser,et al.  Variation in the hearing sensitivity of a dolphin population determined through the use of evoked potential audiometry. , 2006, The Journal of the Acoustical Society of America.

[40]  V. Richards,et al.  Monaural envelope correlation perception. , 1987, The Journal of the Acoustical Society of America.

[41]  Ray Meddis,et al.  Physiological Correlates of Comodulation Masking Release in the Mammalian Ventral Cochlear Nucleus , 2001, The Journal of Neuroscience.

[42]  W. Au,et al.  Prey dynamics affect foraging by a pelagic predator (Stenella longirostris) over a range of spatial and temporal scales , 2003, Behavioral Ecology and Sociobiology.

[43]  D M Green,et al.  Spectral weights in profile listening. , 1990, The Journal of the Acoustical Society of America.

[44]  D. M. Green The number of components in profile analysis tasks. , 1992, The Journal of the Acoustical Society of America.

[45]  C. Mason,et al.  Discriminability of narrow-band sounds in the absence of level cues. , 1993, The Journal of the Acoustical Society of America.

[46]  D. K. Caldwell,et al.  The Whistle of the Atlantic Bottlenosed Dolphin (Tursiops truncatus)—Ontogeny , 1979 .