The causes of evolvability and their evolution

Evolvability is the ability of a biological system to produce phenotypic variation that is both heritable and adaptive. It has long been the subject of anecdotal observations and theoretical work. In recent years, however, the molecular causes of evolvability have been an increasing focus of experimental work. Here, we review recent experimental progress in areas as different as the evolution of drug resistance in cancer cells and the rewiring of transcriptional regulation circuits in vertebrates. This research reveals the importance of three major themes: multiple genetic and non-genetic mechanisms to generate phenotypic diversity, robustness in genetic systems, and adaptive landscape topography. We also discuss the mounting evidence that evolvability can evolve and the question of whether it evolves adaptively.In this article, Payne and Wagner discuss how recent experimental studies are complementing theoretical work to enhance our understanding of the evolvability of diverse biological systems. They highlight phenotypic heterogeneity, robustness and adaptive landscape topography as causes of evolvability, and they additionally discuss evidence for whether evolvability itself can evolve.

[1]  C. Wilke,et al.  The evolutionary consequences of erroneous protein synthesis , 2009, Nature Reviews Genetics.

[2]  R. Shamir,et al.  Faculty of 1000 evaluation for Enhancer redundancy provides phenotypic robustness in mammalian development. , 2018 .

[3]  Joshua L. Payne,et al.  A thousand empirical adaptive landscapes and their navigability , 2017, Nature Ecology &Evolution.

[4]  A. Wagner,et al.  Innovation and robustness in complex regulatory gene networks , 2007, Proceedings of the National Academy of Sciences.

[5]  D. Weinreich,et al.  RAPID EVOLUTIONARY ESCAPE BY LARGE POPULATIONS FROM LOCAL FITNESS PEAKS IS LIKELY IN NATURE , 2005, Evolution; international journal of organic evolution.

[6]  Gregory A. Newby,et al.  Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism , 2014, Cell.

[7]  Mark Rebeiz,et al.  Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences , 2011, Proceedings of the National Academy of Sciences.

[8]  Jianzhi Zhang,et al.  The fitness landscape of a tRNA gene , 2016, Science.

[9]  Sean P Mullen,et al.  RNA editing: a driving force for adaptive evolution? , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[10]  W. Jeffery,et al.  Cryptic Variation in Morphological Evolution: HSP90 as a Capacitor for Loss of Eyes in Cavefish , 2013, Science.

[11]  M. Nowak,et al.  Stochastic Tunnels in Evolutionary Dynamics , 2004, Genetics.

[12]  J. W. Thornton,et al.  Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites , 2015, eLife.

[13]  J. Starrfelt,et al.  Bet‐hedging—a triple trade‐off between means, variances and correlations , 2012, Biological reviews of the Cambridge Philosophical Society.

[14]  Meredith V. Trotter,et al.  Robustness and evolvability. , 2010, Trends in genetics : TIG.

[15]  E. van Nimwegen,et al.  Figures and figure supplements Expression noise facilitates the evolution of gene regulation , 2015 .

[16]  Michael J. Harms,et al.  High-order epistasis shapes evolutionary trajectories , 2017, PLoS Comput. Biol..

[17]  G. Suzuki,et al.  A Yeast Prion, Mod5, Promotes Acquired Drug Resistance and Cell Survival Under Environmental Stress , 2012, Science.

[18]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[19]  F. Arnold,et al.  Protein stability promotes evolvability. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Philip M. Kim,et al.  Non-base-contacting residues enable kaleidoscopic evolution of metazoan C2H2 zinc finger DNA binding , 2017, Genome Biology.

[21]  Nicholas T. Ingolia Ribosome Footprint Profiling of Translation throughout the Genome , 2016, Cell.

[22]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[23]  Sergey Kryazhimskiy,et al.  The dynamics of adaptation on correlated fitness landscapes , 2009, Proceedings of the National Academy of Sciences.

[24]  Danna R. Gifford,et al.  Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa , 2016, Evolution; international journal of organic evolution.

[25]  Christopher M. Jakobson,et al.  Quantitative characterization of all single amino acid variants of a viral capsid-based drug delivery vehicle , 2018, Nature Communications.

[26]  L. Rosa Computing the Extended Synthesis: Mapping the Dynamics and Conceptual Structure of the Evolvability Research Front. , 2017 .

[27]  E. Ziętkiewicz,et al.  Translational readthrough potential of natural termination codons in eucaryotes – The impact of RNA sequence , 2015, RNA biology.

[28]  Gregory A. Newby,et al.  Luminidependens (LD) is an Arabidopsis protein with prion behavior , 2016, Proceedings of the National Academy of Sciences.

[29]  James O Lloyd-Smith,et al.  Adaptation in protein fitness landscapes is facilitated by indirect paths , 2016, bioRxiv.

[30]  Mapping mutational effects along the evolutionary landscape of HIV envelope , 2018, eLife.

[31]  Heather L. True,et al.  Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits , 2004, Nature.

[32]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[33]  E. Ross,et al.  Generating new prions by targeted mutation or segment duplication , 2015, Proceedings of the National Academy of Sciences.

[34]  Joshua L. Payne,et al.  RNA-mediated gene regulation is less evolvable than transcriptional regulation , 2018, Proceedings of the National Academy of Sciences.

[35]  Isabelle Gagnon-Arsenault,et al.  Gene duplication can impart fragility, not robustness, in the yeast protein interaction network , 2017, Science.

[36]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[37]  Jakub Otwinowski,et al.  Inferring fitness landscapes by regression produces biased estimates of epistasis , 2014, Proceedings of the National Academy of Sciences.

[38]  M. Vignuzzi,et al.  Attenuation of RNA viruses by redirecting their evolution in sequence space , 2017, Nature Microbiology.

[39]  Ilan Eshel,et al.  Clone-selection and optimal rates of mutation , 1973, Journal of Applied Probability.

[40]  H. J. Beaumont,et al.  Experimental evolution of bet hedging , 2009, Nature.

[41]  Alexander D. Johnson,et al.  Gene regulatory network plasticity predates a switch in function of a conserved transcription regulator , 2017, eLife.

[42]  S. Lindquist,et al.  Hsp90 as a capacitor for morphological evolution , 1998, Nature.

[43]  Richard A. Notebaart,et al.  Network-level architecture and the evolutionary potential of underground metabolism , 2014, Proceedings of the National Academy of Sciences.

[44]  D. Bolon,et al.  Experimental illumination of a fitness landscape , 2011, Proceedings of the National Academy of Sciences.

[45]  Margaret J. Eppstein,et al.  Competition along trajectories governs adaptation rates towards antimicrobial resistance , 2016, Nature Ecology &Evolution.

[46]  Claudia Bank,et al.  A systematic survey of an intragenic epistatic landscape , 2014, bioRxiv.

[47]  E. Borenstein,et al.  The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes , 2006, Journal of evolutionary biology.

[48]  Joshua L. Payne,et al.  The Robustness and Evolvability of Transcription Factor Binding Sites , 2014, Science.

[49]  Dan S. Tawfik,et al.  Potential role of phenotypic mutations in the evolution of protein expression and stability , 2009, Proceedings of the National Academy of Sciences.

[50]  R. Lenski,et al.  Test of synergistic interactions among deleterious mutations in bacteria , 1997, Nature.

[51]  E. Borenstein,et al.  Direct evolution of genetic robustness in microRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Jeffrey E. Barrick,et al.  Second-Order Selection for Evolvability in a Large Escherichia coli Population , 2011, Science.

[53]  H. Girardey,et al.  Trajectories , 2009, Handbook of Critical Agrarian Studies.

[54]  Alpan Raval,et al.  Evolution favors protein mutational robustness in sufficiently large populations , 2007 .

[55]  Susan Lindquist,et al.  Hsp90 and Environmental Stress Transform the Adaptive Value of Natural Genetic Variation , 2010, Science.

[56]  Sebastian Bonhoeffer,et al.  How Good Are Statistical Models at Approximating Complex Fitness Landscapes? , 2016, Molecular biology and evolution.

[57]  Karl R. Wotton,et al.  Gap Gene Regulatory Dynamics Evolve along a Genotype Network , 2015, bioRxiv.

[58]  J. Jensen,et al.  On the (un)predictability of a large intragenic fitness landscape , 2016, Proceedings of the National Academy of Sciences.

[59]  P. Alberch From genes to phenotype: dynamical systems and evolvability , 2004, Genetica.

[60]  D. Weinreich,et al.  Variability in fitness effects can preclude selection of the fittest. , 2017, Annual review of ecology, evolution, and systematics.

[61]  B. Alexander,et al.  Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance , 2016, Nature Communications.

[62]  A. Wagner Robustness, evolvability, and neutrality , 2005, FEBS letters.

[63]  Wenfeng Qian,et al.  Positive selection for elevated gene expression noise in yeast , 2009, Molecular systems biology.

[64]  David L. Young,et al.  Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein , 2013, RNA.

[65]  Gergely J Szöllosi,et al.  Congruent evolution of genetic and environmental robustness in micro-RNA. , 2008, Molecular biology and evolution.

[66]  M. West-Eberhard Developmental plasticity and evolution , 2003 .

[67]  Robert M. Waterhouse,et al.  Evolutionary Dynamics of Abundant Stop Codon Readthrough , 2016, Molecular biology and evolution.

[68]  Aviv Bergman,et al.  THE EVOLUTION OF THE EVOLVABILITY PROPERTIES OF THE YEAST PRION [PSI+] , 2003, Evolution; international journal of organic evolution.

[69]  J. Masel,et al.  Complex Adaptations Can Drive the Evolution of the Capacitor [PSI +], Even with Realistic Rates of Yeast Sex , 2009, PLoS genetics.

[70]  S. Frank,et al.  Natural selection. II. Developmental variability and evolutionary rate * , 2011, Journal of evolutionary biology.

[71]  J. Poulain,et al.  Capturing the mutational landscape of the beta-lactamase TEM-1 , 2013, Proceedings of the National Academy of Sciences.

[72]  Ryo Sakai,et al.  Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network , 2014, Nature Communications.

[73]  Michael T. Laub,et al.  Pervasive degeneracy and epistasis in a protein-protein interface , 2015, Science.

[74]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[75]  A. Sousa,et al.  Positive Epistasis Drives the Acquisition of Multidrug Resistance , 2009, PLoS genetics.

[76]  Michael Baym,et al.  Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes , 2015, Nature Communications.

[77]  S. Rutherford,et al.  Between genotype and phenotype: protein chaperones and evolvability , 2003, Nature Reviews Genetics.

[78]  Sasha F. Levy,et al.  Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast , 2016, Cell.

[79]  Dan S. Tawfik Messy biology and the origins of evolutionary innovations. , 2010, Nature chemical biology.

[80]  Jonathan P. Bollback,et al.  Regulatory network structure determines patterns of intermolecular epistasis , 2017, eLife.

[81]  David A. Weitz,et al.  Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices , 2017, Nature Reviews Genetics.

[82]  Christopher G. Langton,et al.  Artificial Life: Proceedings Of An Interdisciplinary Workshop On The Synthesis And Simulation Of Living Systems , 1989 .

[83]  J. Valcárcel,et al.  The complete local genotype–phenotype landscape for the alternative splicing of a human exon , 2016, Nature Communications.

[84]  R. Lenski,et al.  Evolution of high mutation rates in experimental populations of E. coli , 1997, Nature.

[85]  Yvonne H Chan,et al.  Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints , 2017, Nature Communications.

[86]  M. Pigliucci Is evolvability evolvable? , 2008, Nature Reviews Genetics.

[87]  Joshua D. Knowles,et al.  Analysis of a complete DNA–protein affinity landscape , 2010, Journal of The Royal Society Interface.

[88]  Ben S. Wittner,et al.  A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations , 2010, Cell.

[89]  A. Wagner DOES EVOLUTIONARY PLASTICITY EVOLVE? , 1996, Evolution; international journal of organic evolution.

[90]  Erik M. Quandt,et al.  Innovation in an E. coli evolution experiment is contingent on maintaining adaptive potential until competition subsides , 2018, PLoS genetics.

[91]  R. Ranganathan,et al.  Evolvability as a Function of Purifying Selection in TEM-1 β-Lactamase , 2015, Cell.

[92]  D. Houle Comparing evolvability and variability of quantitative traits. , 1992, Genetics.

[93]  E. Ortlund,et al.  Evolution of DNA Specificity in a Transcription Factor Family Produced a New Gene Regulatory Module , 2014, Cell.

[94]  Nicholas T Ingolia,et al.  Topology and Robustness in the Drosophila Segment Polarity Network , 2004, PLoS biology.

[95]  R. Ranganathan,et al.  Origins of Allostery and Evolvability in Proteins: A Case Study , 2016, Cell.

[96]  Dan S. Tawfik,et al.  Protein Dynamism and Evolvability , 2009, Science.

[97]  K. Gerdes,et al.  Mechanisms of bacterial persistence during stress and antibiotic exposure , 2016, Science.

[98]  P. Sorger,et al.  Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , 2009, Nature.

[99]  Sydney M. Shaffer,et al.  Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance , 2017, Nature.

[100]  Michael B. Doud,et al.  Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin , 2016, Viruses.

[101]  Cole Trapnell,et al.  Single-cell transcriptome sequencing: recent advances and remaining challenges , 2016, F1000Research.

[102]  Benjamin H. Good,et al.  The Impact of Macroscopic Epistasis on Long-Term Evolutionary Dynamics , 2014, Genetics.

[103]  T. Misteli,et al.  The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity , 2016, Science.

[104]  A. Wagner Robustness and Evolvability in Living Systems , 2005 .

[105]  Nigel F. Delaney,et al.  Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation , 2011, Science.

[106]  S. Lindquist,et al.  Prions are a common mechanism for phenotypic inheritance in wild yeasts , 2012, Nature.

[107]  M. Eisen,et al.  The Fitness Landscapes of cis-Acting Binding Sites in Different Promoter and Environmental Contexts , 2010, PLoS genetics.

[108]  S. Lindquist,et al.  Prion Switching in Response to Environmental Stress , 2008, PLoS biology.

[109]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[110]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[111]  Daniel M. Stoebel,et al.  Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory , 2017, Nature Ecology &Evolution.

[112]  E. Rubin,et al.  Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity , 2017, Nature.

[113]  Alexander van Oudenaarden,et al.  Spatially resolved transcriptomics and beyond , 2014, Nature Reviews Genetics.

[114]  Johannes Freitag,et al.  Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi , 2012, Nature.

[115]  Dan S. Tawfik,et al.  The Evolutionary Potential of Phenotypic Mutations , 2015, PLoS genetics.

[116]  T. F. Hansen Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. , 2003, Bio Systems.

[117]  A. Wagner,et al.  The Molecular Chaperone DnaK Is a Source of Mutational Robustness , 2016, Genome biology and evolution.

[118]  E. Wilson,et al.  Rethinking the Theoretical Foundation of Sociobiology , 2007, The Quarterly Review of Biology.

[119]  C. Wilke,et al.  The look-ahead effect of phenotypic mutations , 2007, Biology Direct.

[120]  S. Lindquist,et al.  Hsp90 as a capacitor of phenotypic variation , 2002, Nature.

[121]  Victor Hanson-Smith,et al.  Following Gene Duplication, Paralog Interference Constrains Transcriptional Circuit Evolution , 2013, Science.

[122]  Richard A. Watson,et al.  PERSPECTIVE:SIGN EPISTASIS AND GENETIC CONSTRAINT ON EVOLUTIONARY TRAJECTORIES , 2005 .

[123]  Michael M. Desai,et al.  Global epistasis makes adaptation predictable despite sequence-level stochasticity , 2014, Science.

[124]  Justin R. Meyer,et al.  Destabilizing mutations encode nongenetic variation that drives evolutionary innovation , 2018, Science.

[125]  Eric J. Hayden,et al.  Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme , 2011, Nature.

[126]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[127]  M. Fares The origins of mutational robustness. , 2015, Trends in genetics : TIG.

[128]  S. Gavrilets Evolution and speciation on holey adaptive landscapes. , 1997, Trends in ecology & evolution.

[129]  M. Fares,et al.  Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae , 2014, Genome research.

[130]  O. Tenaillon,et al.  Evolution of Mutational Robustness in an RNA Virus , 2005, PLoS biology.

[131]  Guido Sanguinetti,et al.  Network of epistatic interactions within a yeast snoRNA , 2016, Science.

[132]  Stuart A. Kauffman,et al.  Requirements for evolvability in complex systems: orderly dynamics and frozen components , 1990 .

[133]  T. Cooper,et al.  Mechanisms and selection of evolvability: experimental evidence. , 2013, FEMS microbiology reviews.

[134]  Dan S. Tawfik,et al.  The 'evolvability' of promiscuous protein functions , 2005, Nature Genetics.

[135]  William A. Flavahan,et al.  Epigenetic plasticity and the hallmarks of cancer , 2017, Science.

[136]  P. Keightley,et al.  A Comparison of Models to Infer the Distribution of Fitness Effects of New Mutations , 2013, Genetics.

[137]  Andreas Wagner,et al.  Effects of Recombination on Complex Regulatory Circuits , 2009, Genetics.

[138]  Timothy A. Whitehead,et al.  Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded , 2017, Nature Communications.

[139]  A. Philippakis,et al.  Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities , 2006, Nature Biotechnology.

[140]  D. J. Kiviet,et al.  Empirical fitness landscapes reveal accessible evolutionary paths , 2007, Nature.

[141]  Dan S. Tawfik,et al.  Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein , 2006, Nature.

[142]  Christopher D. McFarland,et al.  Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice , 2018, Nature Genetics.

[143]  A. E. Tsong,et al.  Evolution of alternative transcriptional circuits with identical logic , 2006, Nature.

[144]  Adam S Dingens,et al.  Experimental Estimation of the Effects of All Amino-Acid Mutations to HIV’s Envelope Protein on Viral Replication in Cell Culture , 2016, PLoS pathogens.

[145]  Laura Nuño de la Rosa Computing the Extended Synthesis: Mapping the Dynamics and Conceptual Structure of the Evolvability Research Front , 2017, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[146]  R. Pappu,et al.  Phase separation of a yeast prion protein promotes cellular fitness , 2018, Science.

[147]  J. Casadesús,et al.  Contribution of phenotypic heterogeneity to adaptive antibiotic resistance , 2013, Proceedings of the National Academy of Sciences.

[148]  Tyler H. Garvin,et al.  Enhancer Redundancy Allows for Phenotypic Robustness in Mammalian Development , 2017, Nature.

[149]  Benjamin H. Good,et al.  The Dynamics of Molecular Evolution Over 60,000 Generations , 2017, Nature.

[150]  A. Buckling,et al.  The Beagle in a bottle , 2009, Nature.

[151]  R. Lenski,et al.  Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population , 2011, Science.

[152]  Michael M. Desai,et al.  Genetic variation in adaptability and pleiotropy in budding yeast , 2017, bioRxiv.

[153]  M. Conrad The geometry of evolution. , 1990, Bio Systems.

[154]  F. Taddei,et al.  Costs and Benefits of High Mutation Rates: Adaptive Evolution of Bacteria in the Mouse Gut , 2001, Science.

[155]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[156]  S. Rosenberg,et al.  Mutation as a Stress Response and the Regulation of Evolvability , 2007, Critical reviews in biochemistry and molecular biology.

[157]  D. Gautheret,et al.  Genome-wide translational changes induced by the prion [PSI+]. , 2014, Cell reports.

[158]  Simon V. Avery,et al.  Microbial cell individuality and the underlying sources of heterogeneity , 2006, Nature Reviews Microbiology.

[159]  Steven A. Frank,et al.  Nonheritable Cellular Variability Accelerates the Evolutionary Processes of Cancer , 2012, PLoS biology.

[160]  Michael J. Wiser,et al.  Long-Term Dynamics of Adaptation in Asexual Populations , 2013, Science.

[161]  M. Ostermeier,et al.  Environmental changes bridge evolutionary valleys , 2016, Science Advances.

[162]  Joseph W. Thornton,et al.  Resurrecting ancient genes: experimental analysis of extinct molecules , 2004, Nature Reviews Genetics.

[163]  David W. Hall,et al.  Selection Transforms the Landscape of Genetic Variation Interacting with Hsp90 , 2016, PLoS biology.

[164]  Joshua G. Dunn,et al.  Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster , 2013, eLife.

[165]  Michael M. Desai,et al.  Sex Speeds Adaptation by Altering the Dynamics of Molecular Evolution , 2016, Nature.

[166]  S. Copley Enzymes with extra talents: moonlighting functions and catalytic promiscuity. , 2003, Current opinion in chemical biology.

[167]  Dan S. Tawfik,et al.  Initial Mutations Direct Alternative Pathways of Protein Evolution , 2011, PLoS genetics.

[168]  Manuel A. S. Santos,et al.  Candida albicans CUG Mistranslation Is a Mechanism To Create Cell Surface Variation , 2013, mBio.

[169]  S. Fields,et al.  Deep mutational scanning: a new style of protein science , 2014, Nature Methods.

[170]  Dmitry Chudakov,et al.  Local fitness landscape of the green fluorescent protein , 2016, Nature.

[171]  M. Laub,et al.  Evolving New Protein-Protein Interaction Specificity through Promiscuous Intermediates , 2015, Cell.

[172]  S. Siller Foundations of Social Evolution , 1999, Heredity.

[173]  John Maynard Smith,et al.  Natural Selection and the Concept of a Protein Space , 1970, Nature.

[174]  D. J. Kiviet,et al.  Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. , 2011, Journal of theoretical biology.

[175]  A. Gardner,et al.  The genetical theory of kin selection , 2011, Journal of evolutionary biology.

[176]  Nicholas C. Wu,et al.  A Comprehensive Biophysical Description of Pairwise Epistasis throughout an Entire Protein Domain , 2014, Current Biology.

[177]  Craig D. Kaplan,et al.  High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop , 2016, bioRxiv.

[178]  Jay Shendure,et al.  Saturation Editing of Genomic Regions by Multiplex Homology-Directed Repair , 2014, Nature.

[179]  Z. Yakhini,et al.  Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters , 2012, Nature Biotechnology.

[180]  Timothy R Hughes,et al.  Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. , 2010, Trends in genetics : TIG.

[181]  Joseph W. Thornton,et al.  Alternate evolutionary histories in the sequence space of an ancient protein , 2017, Nature.

[182]  Manuel A. S. Santos,et al.  Phenotypic heterogeneity promotes adaptive evolution , 2017, PLoS biology.

[183]  Bruce A. Posner,et al.  Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells , 2016, Nature Communications.

[184]  A. Hochschild,et al.  A bacterial global regulator forms a prion , 2017, Science.

[185]  N. Shoresh,et al.  Antibiotic tolerance facilitates the evolution of resistance , 2017, Science.

[186]  Ben Lehner,et al.  Pairwise and higher order genetic interactions during the evolution of a tRNA , 2018, Nature.

[187]  G. Wagner,et al.  EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS , 2003 .

[188]  Dan S. Tawfik,et al.  Chaperonin overexpression promotes genetic variation and enzyme evolution , 2009, Nature.

[189]  Joshua B. Plotkin,et al.  Structure and Age Jointly Influence Rates of Protein Evolution , 2012, PLoS Comput. Biol..

[190]  H. True,et al.  A yeast prion provides a mechanism for genetic variation and phenotypic diversity , 2000, Nature.

[191]  S. Lindquist,et al.  Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits , 2016, Cell.

[192]  Martin Ackermann,et al.  A functional perspective on phenotypic heterogeneity in microorganisms , 2015, Nature Reviews Microbiology.

[193]  M. Feder Robustness and Evolvability in Living Systems. Princeton Studies in Complexity.By Andreas Wagner. Princeton (New Jersey): Princeton University Press. $49.50. xv + 367 p; ill.; index. ISBN: 0–691–12240–7. 2005. , 2006 .

[194]  J. Krug,et al.  Empirical fitness landscapes and the predictability of evolution , 2014, Nature Reviews Genetics.

[195]  S. Tans,et al.  Breaking evolutionary constraint with a tradeoff ratchet , 2015, Proceedings of the National Academy of Sciences.

[196]  E. Rubin,et al.  Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance , 2014, Proceedings of the National Academy of Sciences.

[197]  C. Waddington,et al.  GENETIC ASSIMILATION OF AN ACQUIRED CHARACTER , 1953 .

[198]  Rob Phillips,et al.  Promoter architecture dictates cell-to-cell variability in gene expression , 2014, Science.

[199]  Michael J. Wiser,et al.  Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load , 2012, Proceedings of the National Academy of Sciences.

[200]  Gregory W. Campbell,et al.  Comprehensive experimental fitness landscape and evolutionary network for small RNA , 2013, Proceedings of the National Academy of Sciences.

[201]  Joshua A. Riback,et al.  Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response , 2017, Cell.

[202]  J. Masel Cryptic Genetic Variation Is Enriched for Potential Adaptations , 2006, Genetics.

[203]  Gregory A. Newby,et al.  Pioneer cells established by the [SWI+] prion can promote dispersal and out-crossing in yeast , 2017, PLoS biology.