Anisotropy of atom–atom repulsions

We describe investigations of the short‐range repulsion part of the intermolecular potential using a test particle approach. This approach provides an economical method of constructing reasonably accurate model repulsion potentials and demonstrates the importance of anisotropy in describing the short‐range repulsion. © 1994 by John Wiley & Sons, Inc.

[1]  A. Stone,et al.  The intermolecular potential of chlorine , 1988 .

[2]  G. Halsey,et al.  Second Virial Coefficients of Argon, Krypton, and Argon‐Krypton Mixtures at Low Temperatures , 1962 .

[3]  H. Böhm,et al.  A study of short‐range repulsions , 1982 .

[4]  D. L. Cooper,et al.  Distributed multipole analysis from charge partitioning by zero-flux surfaces: The structure of HF complexes , 1985 .

[5]  A. Stone,et al.  Local and non-local dispersion models , 1989 .

[6]  A. Stone The induction energy of an assembly of polarizable molecules , 1989 .

[7]  H. Böhm,et al.  A simple treatment of intermolecular interactions: Synthesis of ab initio calculations and combination rules , 1983 .

[8]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[9]  A. Stone,et al.  Towards an accurate intermolecular potential for water , 1992 .

[10]  M. Paniagua,et al.  1.1.1 electrostatic description of molecular systems , 1985 .

[11]  R. A. Aziz,et al.  Intermolecular forces in mixtures of helium with the heavier noble gases. [Differential cross sections] , 1977 .

[12]  John W. Hepburn,et al.  A simple but reliable method for the prediction of intermolecular potentials , 1975 .

[13]  Patrick W. Fowler,et al.  Do electrostatic interactions predict structures of van der Waals molecules , 1983 .

[14]  O. C. Simpson,et al.  Relation between charge and force parameters of closed‐shell atoms and ions , 1975 .

[15]  S. Price The limitations of isotropic site-site potentials to describe a N2-N2 intermolecular potential surface , 1986 .

[16]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[17]  A. Stone,et al.  Intermolecular interactions in halogens: Bromine and iodine , 1988 .

[18]  Arnold T. Hagler,et al.  New combining rules for rare gas van der waals parameters , 1993, J. Comput. Chem..

[19]  J. McCoubrey,et al.  Intermolecular forces between unlike molecules. A more complete form of the combining rules , 1960 .

[20]  Sarah L. Price,et al.  SOME NEW IDEAS IN THE THEORY OF INTERMOLECULAR FORCES - ANISOTROPIC ATOM ATOM POTENTIALS , 1988 .

[21]  A. Stone,et al.  Intermolecular perturbation theory , 1984 .

[22]  P. Sikora Combining rules for spherically symmetric intermolecular potentials , 1970 .

[23]  W. A. Sokalski,et al.  Correlated molecular and cumulative atomic multipole moments , 1987 .

[24]  A. Stone The description of bimolecular potentials, forces and torques: the S and V function expansions , 1978 .

[25]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[26]  A. Stone,et al.  Evaluation of anisotropic model intermolecular pair potentials using an ab initio SCF-CI surface , 1980 .

[27]  S. Price,et al.  An overlap model for estimating the anisotropy of repulsion , 1990 .

[28]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[29]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[30]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[31]  M. R. Chakrabarty,et al.  Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential , 1973 .

[32]  M. Hiza,et al.  A correlation for the prediction of interaction energy parameters for mixtures of small molecules , 1970 .

[33]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[34]  Patrick W. Fowler,et al.  A model for the geometries of Van der Waals complexes , 1985 .

[35]  A. Stone,et al.  Matrix elements between determinantal wavefunctions of non-orthogonal orbitals , 1984 .

[36]  A. Stone Assessment of multipolar approximations to the induction energy , 1989 .

[37]  A. Stone,et al.  THE ANISOTROPY OF THE CL2-CL2 PAIR POTENTIAL AS SHOWN BY THE CRYSTAL-STRUCTURE - EVIDENCE FOR INTERMOLECULAR BONDING OR LONE PAIR EFFECTS , 1982 .

[38]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree-Fock plus damped dispersion (HFD) energy calculations. Systems with small nonsphericity: argon-molecular hydrogen, neon-molecular hydrogen, and helium-molecular hydrogen , 1982 .

[39]  F. Smith Atomic Distortion and the Combining Rule for Repulsive Potentials , 1972 .

[40]  P. Claverie,et al.  The exact multicenter multipolar part of a molecular charge distribution and its simplified representations , 1988 .

[41]  T. Gilbert,et al.  Soft‐Sphere Model for Closed‐Shell Atoms and Ions , 1968 .

[42]  Sarah L. Price,et al.  A systematic intermolecular potential method applied to chlorine , 1990 .

[43]  A. Stone,et al.  Intermolecular forces in van der waals dimers , 1986 .