Nanoimprinted nanocomposite membrane-type metamaterials

We present methods to realize nanoimprinted nanocomposite membrane-type metamaterials with tuned refractive index. Here, the idea is separation of the cured UV-curable resist from top and bottom stamps to make freestanding patterned membranes with controlled thickness. Manipulating the refractive index of the resist material is implemented by changing the volume fraction of nanoparticles in the host polymer. These patterned membrane devices are applied in guided-mode resonance devices exhibiting effective spectral signatures in subwavelength periodic media. We present numerous simulated and fabricated nanomembranes with excellent resonance characteristics.

[1]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[2]  Martina Gerken,et al.  Tailoring the refractive index of nanoimprint resist by blending with TiO_2 nanoparticles , 2014 .

[3]  Wei Li,et al.  Large-Scale All-Dielectric Metamaterial Perfect Reflectors , 2015 .

[4]  Bai Yang,et al.  Preparation and characterization of ZnS–polymer nanocomposite films with high refractive index , 2003 .

[5]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[6]  R. Magnusson,et al.  Development of tuned refractive-index nanocomposites to fabricate nanoimprinted optical devices , 2018 .

[7]  R. Magnusson,et al.  Fabrication methods for infrared resonant devices. , 2018, Optics letters.

[8]  R. Sperling,et al.  Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Markus Karl,et al.  Flexible and ultra-lightweight polymer membrane lasers , 2018, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[10]  Robert Magnusson,et al.  Fiber-facet-integrated guided-mode resonance filters and sensors: experimental realization. , 2018, Optics letters.

[11]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[12]  U. Suter,et al.  High refractive index films of polymer nanocomposites , 1993 .

[13]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[14]  I. Staude,et al.  Metamaterial-inspired silicon nanophotonics , 2017, Nature Photonics.

[15]  J. Bao,et al.  Understanding the Effect of Different Polymeric Surfactants on Enhancing the Silicon/Reduced Graphene Oxide Anode Performance , 2015 .

[16]  R. Magnusson,et al.  New principle for optical filters , 1992 .

[17]  Yean-Woei Kiang,et al.  A GaN photonic crystal membrane laser. , 2011, Nanotechnology.

[18]  Oskar Painter,et al.  Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes , 2004 .

[19]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[20]  R. Magnusson,et al.  Double-sided guided-mode resonance metamaterials , 2018 .

[21]  G. Michael Morris,et al.  Resonant scattering from two-dimensional gratings , 1996 .

[22]  T K Gaylord,et al.  Normal-incidence guided-mode resonant grating filters: design and experimental demonstration. , 1998, Optics letters.

[23]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[24]  G. Whitesides,et al.  Unconventional Methods for Fabricating and Patterning Nanostructures , 1999 .