Targeting the IL-17 receptor using liposomal spherical nucleic acids as topical therapy for psoriasis.

[1]  2-Dimensional , 2020, Definitions.

[2]  A. Waisman,et al.  Imiquimod-Induced Psoriasis in Mice Depends on the IL-17 Signaling of Keratinocytes. , 2019, The Journal of investigative dermatology.

[3]  G. Kravvas,et al.  Use of topical therapies for pediatric psoriasis: A systematic review , 2018, Pediatric dermatology.

[4]  C. Donahue,et al.  RNA Aptamer Delivery through Intact Human Skin. , 2017, The Journal of investigative dermatology.

[5]  M. Seeger,et al.  Topically Delivered Tumor Necrosis Factor-α-Targeted Gene Regulation for Psoriasis. , 2017, The Journal of investigative dermatology.

[6]  J. Gudjonsson,et al.  The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal. , 2017, The Journal of investigative dermatology.

[7]  E. Nicodème,et al.  Development of a Topical Treatment for Psoriasis Targeting RORγ: From Bench to Skin , 2016, PloS one.

[8]  K. Green,et al.  In Vitro Model of the Epidermis: Connecting Protein Function to 3D Structure. , 2016, Methods in enzymology.

[9]  B. Ryffel,et al.  IMQ‐induced skin inflammation in mice is dependent on IL‐1R1 and MyD88 signaling but independent of the NLRP3 inflammasome , 2015, European journal of immunology.

[10]  Chad A. Mirkin,et al.  siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown , 2015, Proceedings of the National Academy of Sciences.

[11]  M. Seeger,et al.  Ganglioside GM3 depletion reverses impaired wound healing in diabetic mice by activating IGF-1 and insulin receptors , 2013, The Journal of investigative dermatology.

[12]  F. Nestle,et al.  TLRs to cytokines: Mechanistic insights from the imiquimod mouse model of psoriasis , 2013, European journal of immunology.

[13]  James T. Elder,et al.  ALTERATION OF THE EPHA2/EPHRIN-A SIGNALING AXIS IN PSORIATIC EPIDERMIS , 2012, The Journal of investigative dermatology.

[14]  G. Girolomoni,et al.  Psoriasis: rationale for targeting interleukin‐17 , 2012, The British journal of dermatology.

[15]  D. Salinger,et al.  Anti-IL-17 receptor antibody AMG 827 leads to rapid clinical response in subjects with moderate to severe psoriasis: results from a phase I, randomized, placebo-controlled trial. , 2012, The Journal of investigative dermatology.

[16]  C. Mirkin,et al.  Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation , 2012, Proceedings of the National Academy of Sciences.

[17]  Subhashis Banerjee,et al.  Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. , 2012, The New England journal of medicine.

[18]  J. Ortonne,et al.  Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. , 2012, The New England journal of medicine.

[19]  S. Chimenti,et al.  Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. , 2011, The Journal of investigative dermatology.

[20]  P. Tak,et al.  Effects of AIN457, a Fully Human Antibody to Interleukin-17A, on Psoriasis, Rheumatoid Arthritis, and Uveitis , 2010, Science Translational Medicine.

[21]  Chad A Mirkin,et al.  Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. , 2020, Nano letters.

[22]  C. Mirkin,et al.  Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. , 2009, Molecular pharmaceutics.

[23]  F. Nestle,et al.  The IL-23/Th17 axis in the immunopathogenesis of psoriasis. , 2009, The Journal of investigative dermatology.

[24]  L. Boon,et al.  Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis1 , 2009, The Journal of Immunology.

[25]  K. Asadullah,et al.  IL‐22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis , 2006, European journal of immunology.

[26]  A. Gurney,et al.  IL-22 Inhibits Epidermal Differentiation and Induces Proinflammatory Gene Expression and Migration of Human Keratinocytes1 , 2005, The Journal of Immunology.

[27]  P. Heinrich,et al.  Biosynthesis and half-life of the interleukin-6 receptor and its signal transducer gp130. , 1994, European journal of biochemistry.

[28]  M S Favero,et al.  Cytokine kinetics in an in vitro whole blood model following an endotoxin challenge. , 1993, Lymphokine and cytokine research.

[29]  E. Vellenga,et al.  Interleukin-4 (IL-4) receptor expression on human T cells is affected by different intracellular signaling pathways and by IL-4 at transcriptional and posttranscriptional level. , 1992, Blood.

[30]  G. Zahn,et al.  Pharmacokinetics of tumor necrosis factor alpha after intravenous administration in rats. Dose dependence and influence of tumor necrosis factor beta. , 1989, Arzneimittel-Forschung.

[31]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .