Efficient Estimation of First Passage Time Density Function for Jump-Diffusion Processes

The first passage time problem has attracted considerable research interest in the field of stochastic processes. It concerns the estimation of the probability density of the time for a random process to cross a specified boundary level. Even though there are many theoretical advances in solving this problem, for many classes of random processes no analytical solution exists. The jump-diffusion process (JDP) is one such class. Recent research in finance theory has renewed the interest in JDPs, and the first passage time problem for such processes is applicable to several finance problems. In this paper we develop fast Monte Carlo-type numerical methods for computing the first passage density function for JDPs. Compared with the standard Monte Carlo approach, our approaches are about 10--30 times faster.

[1]  Hui Wang,et al.  First passage times of a jump diffusion process , 2003, Advances in Applied Probability.

[2]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[3]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[4]  Song-Chun Zhu,et al.  Stochastic Jump-Diffusion Process for Computing Medial Axes in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  P. Caines,et al.  On the Adaptive Control for Jump Parameter Systems viaNonlinear Filtering , 1995 .

[6]  Joseph A. O'Sullivan,et al.  Automatic target recognition organized via jump-diffusion algorithms , 1997, IEEE Trans. Image Process..

[7]  Peter E. Caines,et al.  Adaptive control for jump parameter systems via nonlinear filtering , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[8]  Chunsheng Zhou A Jump-Diffusion Approach to Modeling Credit Risk and Valuing Defaultable Securities , 1997 .

[9]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[10]  Julia Abrahams,et al.  A Survey of Recent Progress on Level-Crossing Problems for Random Processes , 1986 .

[11]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[12]  D.C.M. Dickson,et al.  Ruin problems: Simulation or calculation? , 1995 .

[13]  T. Lehtonen,et al.  SIMULATING LEVEL-CROSSING PROBABILITIES BY IMPORTANCE SAMPLING , 1992 .

[14]  Xiao Lan Zhang,et al.  Numerical Analysis of American Option Pricing in a Jump-Diffusion Model , 1997, Math. Oper. Res..

[15]  M. Fragoso,et al.  Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems , 1995, IEEE Trans. Autom. Control..

[16]  L Sacerdote,et al.  Jump-diffusion processes as models for neuronal activity. , 1997, Bio Systems.

[17]  A. Atiya,et al.  Using Brownian Bridge for Fast Simulation of Jump-Diffusion Processes and Barrier Options , 2002 .

[18]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[19]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[20]  Ian F. Blake,et al.  Level-crossing problems for random processes , 1973, IEEE Trans. Inf. Theory.

[21]  Sanjiv Ranjan Das The Surprise Element: Jumps in Interest Rates , 2002 .

[22]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[23]  W. R. Schucany,et al.  Generating Random Variates Using Transformations with Multiple Roots , 1976 .

[24]  E. J. Allen,et al.  Numerical solution of first passage problems using an approximate Chapman-Kolmogorov relation , 1998 .

[25]  Mandeep S. Chahal,et al.  Jump Diffusion Processes and Emerging Bond and Stock Markets: An Investigation Using Daily Data , 1997 .

[26]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .