A controllability-based formulation for the topology optimization of smart structures

[1]  Glaucio H. Paulino,et al.  Toward Optimal Design of Piezoelectric Transducers Based on Multifunctional and Smoothly Graded Hybrid Material Systems , 2009 .

[2]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[3]  R. Haftka,et al.  An approach to structure/control simultaneous optimization for large flexible spacecraft , 1987 .

[4]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[5]  S. Narayanan,et al.  Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs , 2008 .

[6]  D. Ruiz,et al.  Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile , 2013 .

[7]  John L. Junkins,et al.  Measure of controllability for actuator placement , 1991 .

[8]  Noboru Kikuchi,et al.  Design of piezoelectric transducers using topology optimization , 1999 .

[9]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[10]  Seung-Bok Choi,et al.  Vibration control of smart hull structure with optimally placed piezoelectric composite actuators , 2011 .

[11]  W. Gawronski,et al.  Balanced actuator and sensor placement for flexible structures , 1996 .

[12]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[13]  Nozomu Kogiso,et al.  Layout optimization methodology of piezoelectric transducers in energy-recycling semi-active vibration control systems , 2014 .

[14]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[15]  Manu Sharma,et al.  Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures , 2011 .

[16]  Zhan Kang,et al.  Dynamic topology optimization of piezoelectric structures with active control for reducing transient response , 2014 .

[17]  Noboru Kikuchi,et al.  Integrated optimal structural and vibration control design , 1996 .

[18]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[19]  A. Hamdan,et al.  Measures of Modal Controllability and Observability for First- and Second-Order Linear Systems , 1989 .

[20]  Hisham Abou-Kandil,et al.  Piezoelectric actuators and sensors location for active control of flexible structures , 2001, IEEE Trans. Instrum. Meas..

[21]  Otávio Augusto Alves da Silveira,et al.  Actuator topology design using the controllability Gramian , 2015 .

[22]  A. Takezawa,et al.  Design methodology of piezoelectric energy-harvesting skin using topology optimization , 2014 .

[23]  N. Olhoff,et al.  Multiple eigenvalues in structural optimization problems , 1994 .

[24]  J. Dias Rodrigues,et al.  Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies , 2006 .

[25]  Mitsuru Kitamura,et al.  Topology optimization for designing strain-gauge load cells , 2010 .

[26]  Jae-Eun Kim,et al.  Multi-physics interpolation for the topology optimization of piezoelectric systems , 2010 .

[27]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[28]  A. Hać,et al.  Sensor And Actuator Location In Motion Control Of Flexible Structures , 1993 .

[29]  Chien Ming Wang,et al.  A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures , 2001 .

[30]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[31]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .