An algorithm of uniform ultimate boundedness for a class of switched linear systems

Uniform ultimate boundedness of a class of switched linear systems is studied. A switched linear system in this class consists of m subsystems, and none of the individual subsystems need to be stabilizable. The switched linear system is shown to be uniformly ultimately bounded for any pre-given bound if the union of individual controllable subspaces covers the entire state space. An algorithm for guaranteeing uniform ultimate boundedness is given to provide the design of continuous controllers and the switching strategy.

[1]  Roderick Murray-Smith,et al.  Side-effects of normalising basis functions in local model networks , 1997 .

[2]  Gang Feng,et al.  Analysis and design for a class of complex control systems Part I: Fuzzy modelling and identification , 1997, Autom..

[3]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[4]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[5]  Xuping Xu,et al.  Stabilization of second-order LTI switched systems , 2000 .

[6]  A. Morse,et al.  Stability of switched systems: a Lie-algebraic condition ( , 1999 .

[7]  S.M. Williams,et al.  Adaptive frequency domain control of PWM switched power line conditioner , 1990, Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition.

[8]  Junhong Nie,et al.  A neural approach to fuzzy modeling , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[9]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[10]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[11]  W. Leithead,et al.  Analytic framework for blended multiple model systems using linear local models , 1999 .

[12]  Tor Arne Johansen,et al.  Local learning in local model networks , 1995 .

[13]  Pierre Roussel-Ragot,et al.  Neural Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms , 1993, Neural Computation.

[14]  Robert Shorten,et al.  On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..

[15]  Tor Arne Johansen,et al.  On Tikhonov regularization, bias and variance in nonlinear system identification , 1997, Autom..

[16]  José Ragot,et al.  Non-linear dynamic system identification: A multi-model approach , 1999 .

[17]  John Guckenheimer,et al.  A Dynamical Simulation Facility for Hybrid Systems , 1993, Hybrid Systems.

[18]  Roger W. Brockett,et al.  Hybrid Models for Motion Control Systems , 1993 .

[19]  Robert Shorten,et al.  On the interpretation of local models in blended multiple model structures. , 1999 .

[20]  Lennart Ljung,et al.  Construction of Composite Models from Observed Data , 1992 .

[21]  Lawton H. Lee,et al.  Identification of Linear Parameter-Varying Systems Using Nonlinear Programming , 1999 .

[22]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[23]  Pravin Varaiya,et al.  Smart cars on smart roads: problems of control , 1991, IEEE Trans. Autom. Control..

[24]  J. Stark,et al.  Delay Embeddings for Forced Systems. I. Deterministic Forcing , 1999 .

[25]  Pierre Roussel-Ragot,et al.  Training recurrent neural networks: why and how? An illustration in dynamical process modeling , 1994, IEEE Trans. Neural Networks.

[26]  D. Broomhead,et al.  Takens embedding theorems for forced and stochastic systems , 1997 .

[27]  Lee A. Feldkamp,et al.  Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks , 1994, IEEE Trans. Neural Networks.

[28]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[29]  Michel Verhaegen,et al.  Identification of multivariable LPV state space systems by local gradient search , 2001, 2001 European Control Conference (ECC).

[30]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[31]  Tatsushi Ooba,et al.  Two conditions concerning common quadratic Lyapunov functions for linear systems , 1997, IEEE Trans. Autom. Control..

[32]  Kumpati S. Narendra,et al.  Neural networks and dynamical systems , 1992, Int. J. Approx. Reason..

[33]  J. Sjöberg On estimation of nonlinear black-box models: how to obtain a good initialization , 1997 .

[34]  Léon Personnaz,et al.  BLACK-BOX MODELING WITH STATE-SPACE NEURAL NETWORKS , 1995 .

[35]  Chengyu Gan,et al.  Model-based recurrent neural network for modeling nonlinear dynamic systems , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[36]  Y. C. Soh,et al.  Stability of perturbed switched nonlinear systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[37]  L. Ljung,et al.  Overtraining, regularization and searching for a minimum, with application to neural networks , 1995 .

[38]  Said Oucheriah,et al.  Robust tracking and model following of uncertain dynamic delay systems by memoryless linear controllers , 1999, IEEE Trans. Autom. Control..

[39]  Georges Bastin,et al.  An estimator of the inverse covariance matrix and its application to ML parameter estimation in dynamical systems , 2001, Autom..

[40]  Jun Zhao,et al.  Hybrid control for global stabilization of the cart-pendulum system , 2001, Autom..

[41]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..