Representability of binary relations through fuzzy numbers
暂无分享,去创建一个
Juan Carlos Candeal | Esteban Induráin | María J. Campión | E. Induráin | J. Candeal | M. J. Campión
[1] James F. Allen. Maintaining knowledge about temporal intervals , 1983, CACM.
[2] Peter C. Fishburn,et al. Preference Structures and Their Numerical Representations , 1999, Theor. Comput. Sci..
[3] Madan M. Gupta,et al. Introduction to Fuzzy Arithmetic , 1991 .
[4] José Carlos R. Alcantud,et al. Characterization of the existence of semicontinuous weak utilities , 1999 .
[5] Juan Carlos Candeal,et al. Existence of homogeneous representations of interval orders on a cone in a topological vector space , 2005, Soc. Choice Welf..
[6] Ramón Fuentes-González,et al. The study of the interval-valued contexts , 2001, Fuzzy Sets Syst..
[7] Juan Carlos Candeal,et al. Numerical representability of semiorders , 2002, Math. Soc. Sci..
[8] E. Induráin,et al. Representability of Interval Orders , 1998 .
[9] G. Cantor,et al. Beiträge zur Begründung der transfiniten Mengenlehre , 1895 .
[10] G. Mehta. Preference and utility , 1998 .
[11] A. Tversky. Intransitivity of preferences. , 1969 .
[12] G. Fechner. Elemente der Psychophysik , 1998 .
[13] Rudolf F. Albrecht,et al. Topological interpretation of fuzzy sets and intervals , 2003, Fuzzy Sets Syst..
[14] A. Kaufmann,et al. Introduction to fuzzy arithmetic : theory and applications , 1986 .
[15] Ron Shamir,et al. Satisfiability Problems on Intervals and Unit Intervals , 1997, Theor. Comput. Sci..
[16] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[17] P. Fishburn. Interval representations for interval orders and semiorders , 1973 .
[18] Alexis Tsoukiàs,et al. A Characterization of PQI Interval Orders , 2003, Discret. Appl. Math..
[19] Jaap Van Brakel,et al. Foundations of measurement , 1983 .
[20] Wayne Shafer,et al. The Nontransitive Consumer , 1974 .
[21] Gerhard Herden,et al. The Debreu Gap Lemma and some generalizations , 2004 .
[22] R. Luce. Semiorders and a Theory of Utility Discrimination , 1956 .
[23] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[24] Jean-Paul Doignon,et al. On realizable biorders and the biorder dimension of a relation , 1984 .
[25] R. Agaev,et al. Interval choice: classic and general cases , 1993 .
[26] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .
[27] Taner Bilgiç,et al. Fusing Interval Preferences , 2001 .
[28] V. Novák. Fuzzy sets and their applications , 1989 .
[29] Peter C. Fishburn,et al. Utility theory for decision making , 1970 .
[30] Peter C. Fishburn,et al. LEXICOGRAPHIC ORDERS, UTILITIES AND DECISION RULES: A SURVEY , 1974 .
[31] K. Arrow,et al. General Competitive Analysis , 1971 .
[32] P. Swistak. Some representation problems for semiorders , 1980 .
[33] D. Bridges,et al. Representations of Preferences Orderings , 1995 .
[34] D. Dubois,et al. Operations on fuzzy numbers , 1978 .
[35] G. Bosi,et al. Representing preferences with nontransitive indifference by a single real-valued function☆ , 1995 .
[36] K. Arrow,et al. Social Choice and Individual Values , 1951 .
[37] Johann Pfanzagl,et al. Theory of measurement , 1970 .
[38] Patrick Suppes,et al. Foundations of measurement , 1971 .
[40] A. Beardon,et al. The non-existence of a utility function and the structure of non-representable preference relations , 2002 .
[41] Ramon E. Moore,et al. Interval analysis and fuzzy set theory , 2003, Fuzzy Sets Syst..
[42] F. Roberts. Measurement Theory with Applications to Decisionmaking, Utility, and the Social Sciences: Measurement Theory , 1984 .
[43] Peter C. Fishburn,et al. Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..
[44] P. Hammond,et al. Handbook of Utility Theory , 2004 .
[45] Juan Carlos Candeal,et al. Numerical Representations of Interval Orders , 2001, Order.
[46] D. Bridges. Numerical representation of intransitive preferences on a countable set , 1983 .
[47] Taner Bilgiç,et al. Interval-valued preference structures , 1998, Eur. J. Oper. Res..
[48] P. Fishburn. Intransitive indifference with unequal indifference intervals , 1970 .
[49] Donald W. Katzner. Static Demand Theory , 1970 .