Experiments comparing qualitative approaches to rank ordering of multiattribute alternatives

ZAPROS, a method to support rank ordering tasks using ordinal input from decision makers, is discussed and compared with a preference cone technique and the analytic hierarchy process (AHP). It provides a means to identify inconsistencies in ordinal decision tasks, yielding verification and explanation of results for partial ordering of a large set of alternatives. The results indicate that ZAPROS provides no less accuracy in task solution, while having some advantages from a behavioural point of view. Comparative analysis of the effectiveness of the methods under consideration in accordance with differences in task characteristics is carried out.

[1]  O. Ore Theory of Graphs , 1962 .

[2]  P. Slovic,et al.  An analysis-of-variance model for the assessment of configural cue utilization in clinical judgment. , 1968, Psychological bulletin.

[3]  A. Tversky Intransitivity of preferences. , 1969 .

[4]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[5]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[6]  Robin J. Wilson Introduction to Graph Theory , 1974 .

[7]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[8]  Ralph L. Keeney,et al.  Multiplicative Utility Functions , 1974, Oper. Res..

[9]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[10]  Larry D. Rosen,et al.  An eye fixation analysis of multialternative choice , 1975, Memory & cognition.

[11]  John W. Payne,et al.  Task complexity and contingent processing in decision making: An information search and protocol analysis☆ , 1976 .

[12]  Henry Montgomery,et al.  A Study of Intransitive Preferences using a Think Aloud Procedure , 1977 .

[13]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[14]  B. Fischhoff,et al.  Behavioral Decision Theory , 1977 .

[15]  S. Zionts,et al.  Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .

[16]  Stanley Zionts,et al.  An improved method for solving multiple criteria problems involving discrete alternatives , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Anna Hart,et al.  Knowledge elicitation: issues and methods , 1985 .

[18]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[19]  V. Belton A comparison of the analytic hierarchy process and a simple multi-attribute value function , 1986 .

[20]  A. D. Nikiforov,et al.  Multicriterion linear programming problems: (Analytical survey) , 1987 .

[21]  Thomas L. Saaty What is the analytic hierarchy process , 1988 .

[22]  S. Zionts,et al.  An approach for solving discrete alternative multiple criteria problems involving ordinal criteria , 1988 .

[23]  S. Zionts,et al.  Theory of convex cones in multicriteria decision making , 1988 .

[24]  Oleg I. Larichev,et al.  Limits to decision-making ability in direct multiattribute alternative evaluation , 1988 .

[25]  Murat Köksalan,et al.  IDENTIFYING AND RANKING A MOST PREFERRED SUBSET OF ALTERNATIVES IN THE PRESENCE OF MULTIPLE CRITERIA , 1989 .

[26]  Pekka Korhonen,et al.  Choice behavior in interactive multiple-criteria decision making , 1990 .

[27]  Ralph L. Keeney,et al.  Decisions with Multiple Objectives: THE STRUCTURING OF OBJECTIVES , 1993 .