Structural Properties of Recursively Partitionable Graphs with Connectivity 2
暂无分享,去创建一个
Monika Pilsniak | Florent Foucaud | Olivier Baudon | Julien Bensmail | Julien Bensmail | Florent Foucaud | M. Pilsniak | O. Baudon
[1] Olivier Baudon,et al. Recursively Arbitrarily Vertex-Decomposable Suns ∗ , 2010 .
[2] Jakub Przybylo,et al. On the structure of arbitrarily partitionable graphs with given connectivity , 2014, Discret. Appl. Math..
[3] Julien Bensmail. On the longest path in a recursively partitionable graph , 2013 .
[4] Frank Harary,et al. Graph Theory , 2016 .
[5] Antoni Marczyk,et al. An Ore-type condition for arbitrarily vertex decomposable graphs , 2005, Electron. Notes Discret. Math..
[6] L. Lovász. A homology theory for spanning tress of a graph , 1977 .
[7] Jakub Przybylo,et al. Arbitrarily vertex decomposable caterpillars with four or five leaves , 2006, Discuss. Math. Graph Theory.
[8] Dominique Barth,et al. A degree bound on decomposable trees , 2006, Discret. Math..
[9] M. Hornák,et al. ARBITRARILY VERTEX DECOMPOSABLE TREES ARE OF MAXIMUM DEGREE AT MOST SIX , 2003 .
[10] Olivier Baudon,et al. Recursively arbitrarily vertex-decomposable graphs , 2011 .
[11] Dennis Saleh. Zs , 2001 .
[12] Zsolt Tuza,et al. On-line arbitrarily vertex decomposable trees , 2007, Discret. Appl. Math..
[13] Dominique Barth,et al. Decomposable trees: a polynomial algorithm fortripodes , 2002, Discret. Appl. Math..
[14] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.