Designs for Generalized Linear Models With Several Variables and Model Uncertainty

Standard factorial designs sometimes may be inadequate for experiments that aim to estimate a generalized linear model, for example, for describing a binary response in terms of several variables. A method is proposed for finding exact designs for such experiments that uses a criterion allowing for uncertainty in the link function, the linear predictor, or the model parameters, together with a design search. Designs are assessed and compared by simulation of the distribution of efficiencies relative to locally optimal designs over a space of possible models. Exact designs are investigated for two applications, and their advantages over factorial and central composite designs are demonstrated.

[1]  V. I. Denisov,et al.  The design of experiments for discriminating between two stochastic dynamic models , 2000, Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology.

[2]  Joseph B. Kadane,et al.  Optimal Experimental Design for Another's Analysis , 1993 .

[3]  Lawrence Joseph,et al.  A Bayesian A-optimal and model robust design criterion. , 2003, Biometrics.

[4]  Stephen M. Stigler,et al.  Optimal Experimental Design for Polynomial Regression , 1971 .

[5]  E. Läuter,et al.  Optimal multipurpose designs for regression models , 1976 .

[6]  A. Atkinson,et al.  The design of experiments for discriminating between two rival models , 1975 .

[7]  Linda M. Haines,et al.  14 Designs for nonlinear and generalized linear models , 1996, Design and analysis of experiments.

[8]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[9]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[10]  Dechang Chen,et al.  The Theory of the Design of Experiments , 2001, Technometrics.

[11]  M. Silvapulle On the Existence of Maximum Likelihood Estimators for the Binomial Response Models , 1981 .

[12]  R. H. Myers Generalized Linear Models: With Applications in Engineering and the Sciences , 2001 .

[13]  L Wu,et al.  A multiple imputation method for missing covariates in non‐linear mixed‐effects models with application to HIV dynamics , 2001, Statistics in medicine.

[14]  Blaza Toman,et al.  Bayesian Experimental Design , 2006 .

[15]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[16]  Tim B. Swartz,et al.  Approximating Integrals Via Monte Carlo and Deterministic Methods , 2000 .

[17]  L. Haines The application of the annealing algorithm to the construction of exact optimal designs for linear-regression models , 1987 .

[18]  John Hinde,et al.  Parameter Neutral Optimum Design for Non‐linear Models , 1997 .

[19]  Weng Kee Wong,et al.  On the Equivalence of Constrained and Compound Optimal Designs , 1994 .

[20]  Steven E. Rigdon,et al.  Model-Oriented Design of Experiments , 1997, Technometrics.

[21]  Necla Gunduz,et al.  On Optimal Designs for High Dimensional Binary Regression Models , 2001 .

[22]  S. Minkin Optimal Designs for Binary Data , 1987 .

[23]  R. D. Cook,et al.  A Comparison of Algorithms for Constructing Exact D-Optimal Designs , 1980 .

[24]  Christopher J. Nachtsheim,et al.  Model Robust, Linear-Optimal Designs , 1982 .

[25]  R. Sitter Robust designs for binary data , 1992 .

[26]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[27]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[28]  W. DuMouchel,et al.  A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model , 1994 .

[29]  D. Firth Bias reduction of maximum likelihood estimates , 1993 .

[30]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[31]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[32]  Hans Nyquist,et al.  Computation of Optimum in Average Designs for Experiments with Finite Design Space , 2003 .

[33]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[34]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[35]  Michael S. Hamada,et al.  THE EXISTENCE OF MAXIMUM LIKELIHOOD ESTIMATES FROM DESIGNED EXPERIMENTS , 1996 .

[36]  M.-5. OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION , 2002 .

[37]  Khidir M. Abdelbasit,et al.  Experimental Design for Binary Data , 1983 .

[38]  Kathryn Chaloner,et al.  Bayesian Experimental Design for Nonlinear Mixed‐Effects Models with Application to HIV Dynamics , 2004, Biometrics.

[39]  W K Wong,et al.  Minimax D‐Optimal Designs for the Logistic Model , 2000, Biometrics.

[40]  D. Cox,et al.  Planning Experiments for Discriminating between Models , 1974 .

[41]  W. J. Studden Some Robust-Type D-Optimal Designs in Polynomial Regression , 1982 .

[42]  C. F. Wu,et al.  Efficient Sequential Designs with Binary Data , 1985 .

[43]  E. Läuter Experimental design in a class of models , 1974 .