Uncertainty of Arrhenius parameters

Chemical kinetics databases for many elementary gas-phase reactions provide the recommended values of the Arrhenius parameters, the temperature range of their validity, and the temperature dependence of the uncertainty of the rate coefficient k. An analytical expression is derived that describes the temperature dependence of the uncertainty of k as a function of the elements of the covariance matrix of the Arrhenius parameters. Based on this analytical expression, the various descriptions of the temperature dependence of the uncertainty of k used in the combustion, and in the IUPAC and JPL atmospheric chemical databases are analyzed in detail. Recommendations are given for an improved representation of the uncertainty information in future chemical kinetics databases using the covariance matrix of the Arrhenius parameters. Utilization of the joint uncertainty of the Arrhenius parameters is needed for a correct uncertainty analysis in varying temperature chemical kinetic systems. A method is suggested for the determination of the covariance matrix and the joint probability density function of the Arrhenius parameters from the present uncertainty information given in the kinetics databases. The method is demonstrated on seven gas kinetic reactions exhibiting different types of uncertainty representation. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 359–378, 2011

[1]  Marcio Schwaab,et al.  Optimum reference temperature for reparameterization of the Arrhenius equation. Part 2: Problems involving multiple reparameterizations , 2008 .

[2]  Tamás Turányi,et al.  Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms , 2004 .

[3]  J. Warnatz Rate Coefficients in the C/H/O System , 1984 .

[4]  D. Singleton,et al.  Evaluations of the mean values and standard errors of rate constants and their temperature coefficients , 1979 .

[5]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens , 2006 .

[6]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[7]  Tamás Turányi,et al.  Local and global uncertainty analyses of a methane flame model. , 2005, The journal of physical chemistry. A.

[8]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reaxtions of Ox, HOx, NOx and SOx species , 2004 .

[9]  L. Rodríguez-Aragón,et al.  Optimal designs for the Arrhenius equation , 2005 .

[10]  Michael J. Pilling,et al.  Quantitative assessment of uncertainties for a model of tropospheric ethene oxidation using the European Photoreactor (EUPHORE) , 2005 .

[11]  A. Konnov Remaining uncertainties in the kinetic mechanism of hydrogen combustion , 2008 .

[12]  Tamás Turányi,et al.  Uncertainty analysis of NO production during methane combustion , 2008 .

[13]  K. Héberger,et al.  On the errors of Arrhenius parameters and estimated rate constant values , 1987 .

[14]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[15]  Marcio Schwaab,et al.  Optimum reparameterization of power function models , 2008 .

[16]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[17]  T. J. Wallington,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species , 2006 .

[18]  Terese Løvås,et al.  Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion , 2009 .

[19]  Lubomír Kubáček,et al.  Statistical properties of linearization of the Arrhenius equation via the logarithmic transformation , 1997 .

[20]  Tamás Turányi,et al.  Effect of the uncertainty of kinetic and thermodynamic data on methane flame simulation results , 2002 .

[21]  Michael J. Pilling,et al.  Evaluated Kinetic Data for Combustion Modelling , 1992 .

[22]  Tamás Turányi,et al.  Measurement and investigation of chamber radical sources in the European Photoreactor (EUPHORE) , 2006 .

[23]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[24]  Tamás Turányi,et al.  Local and global uncertainty analysis of complex chemical kinetic systems , 2006, Reliab. Eng. Syst. Saf..

[25]  D. Singleton,et al.  Comment on the evaluation of the arrhenius parameters by the least‐squares method , 1977 .

[26]  Martin J. Brown,et al.  Influence of uncertainties in rate constants on computed burning velocities , 1999 .

[27]  Marcio Schwaab,et al.  Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1 : Problems involving one kinetic constant , 2007 .

[28]  Michael J. Pilling,et al.  Summary table of evaluated kinetic data for combustion modeling: Supplement 1 , 1994 .

[29]  Rolf Sundberg,et al.  Statistical aspects on fitting the Arrhenius equation , 1998 .