A finite element method and variable transformations for a forward-backward heat equation

Abstract. The Galerkin finite element method for the forward-backward heat equation is generalized to a wider class of equations with the use of a result on the existence and uniqueness of a weak solution to the problems. First, the theory for the Galerkin method is extended to forward-backward heat equations which contain additional convection and mass terms on an irregular domain. Second, variable transformations are constructed and applied to solve a wide class of forward-backward heat equations that leads to a substantial improvement. Third, Error estimates are presented. Finally, conducted numerical tests corroborate the obtained results.