Scalable modeling and solution of stochastic multiobjective optimization problems

Abstract We present a scalable computing framework for the solution stochastic multiobjective optimization problems. The proposed framework uses a nested conditional value-at-risk (nCVaR) metric to find compromise solutions among conflicting random objectives. We prove that the associated nCVaR minimization problem can be cast as a standard stochastic programming problem with expected value (linking) constraints. We also show that these problems can be implemented in a modular and compact manner using PLASMO (a Julia -based structured modeling framework) and can be solved efficiently using PIPS-NLP (a parallel nonlinear solver). We apply the framework to a CHP design study in which we seek to find compromise solutions that trade-off cost, water, and emissions in the face of uncertainty in electricity and water demands.

[1]  Brian Norton,et al.  Real-life energy use in the UK: How occupancy and dwelling characteristics affect domestic electricity use , 2008 .

[2]  M. Conceição Fonseca,et al.  A stochastic bi-objective location model for strategic reverse logistics , 2010 .

[3]  Sanjay Mehrotra,et al.  Stochastically weighted stochastic dominance concepts with an application in capital budgeting , 2014, Eur. J. Oper. Res..

[4]  Walter J. Gutjahr,et al.  Stochastic multi-objective optimization: a survey on non-scalarizing methods , 2016, Ann. Oper. Res..

[5]  Jian Hu,et al.  Robust and Stochastically Weighted Multiobjective Optimization Models and Reformulations , 2012, Oper. Res..

[6]  Anna Syberfeldt,et al.  Multi-Objective Evolutionary Simulation-Optimization of a Real-World Manufacturing Problem , 2008 .

[7]  A. K. Kar,et al.  Thermal performances of water heaters in series , 1995 .

[8]  C. S. Chang,et al.  Stochastic multiobjective generation dispatch of combined heat and power systems , 1998 .

[9]  José A. Sepúlveda,et al.  Multi-objective simulation optimization for a cancer treatment center , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[10]  Victor M. Zavala,et al.  An inertia-free filter line-search algorithm for large-scale nonlinear programming , 2016, Computational Optimization and Applications.

[11]  James R. Luedtke,et al.  Models and formulations for multivariate dominance-constrained stochastic programs , 2015 .

[12]  Iain Dunning,et al.  Computing in Operations Research Using Julia , 2013, INFORMS J. Comput..

[13]  Vesa Ojalehto,et al.  Coupling dynamic simulation and interactive multiobjective optimization for complex problems: An APROS-NIMBUS case study , 2014, Expert Syst. Appl..

[14]  Shabbir Ahmed,et al.  Supply chain design under uncertainty using sample average approximation and dual decomposition , 2009, Eur. J. Oper. Res..

[15]  R. Tavakkoli-Moghaddam,et al.  Solving a multi-objective multi-depot stochastic location-routing problem by a hybrid simulated annealing algorithm , 2009 .

[16]  Ettore Francesco Bompard,et al.  Control of Interconnected Networks , 2014 .

[17]  Stan Uryasev,et al.  CVaR norm and applications in optimization , 2014, Optim. Lett..

[18]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[19]  Victor M. Zavala,et al.  Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems , 2008 .

[20]  Victor M. Zavala,et al.  Stability of multiobjective predictive control: A utopia-tracking approach , 2012, Autom..

[21]  Fouad Ben Abdelaziz,et al.  Solution approaches for the multiobjective stochastic programming , 2012, Eur. J. Oper. Res..

[22]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[23]  Victor M. Zavala,et al.  Clustering-based preconditioning for stochastic programs , 2016, Comput. Optim. Appl..

[24]  Steven Jeffery,et al.  Bath-water scalds in children and thermostatic mixer valves. , 2006, Burns : journal of the International Society for Burn Injuries.

[25]  Filip Logist,et al.  An interactive decision-support system for multi-objective optimization of nonlinear dynamic processes with uncertainty , 2015, Expert Syst. Appl..

[26]  Gerardo J. Ruiz-Mercado,et al.  Valuation of Water and Emissions in Energy Systems. , 2018, Applied energy.

[27]  Fouad Ben Abdelaziz,et al.  Multi-objective stochastic programming for portfolio selection , 2007, Eur. J. Oper. Res..

[28]  W. Gutjahr,et al.  Bi-objective project portfolio selection and staff assignment under uncertainty , 2010 .

[29]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[30]  Mihai Anitescu,et al.  The parallel solution of dense saddle-point linear systems arising in stochastic programming , 2012, Optim. Methods Softw..

[31]  Lorenz T. Biegler,et al.  Large-Scale Nonlinear Programming for Multi-scenario Optimization , 2006, HPSC.

[32]  Alexander W. Dowling,et al.  A framework for multi-stakeholder decision-making and conflict resolution , 2016, Comput. Chem. Eng..

[33]  Qiu Qi,et al.  Energy balance and efficiency analysis for power generation in internal combustion engine sets using biogas , 2014 .

[34]  N. N. Ziyatdinov,et al.  Optimal design of chemical processes with chance constraints , 2012, Comput. Chem. Eng..

[35]  R. Sacchetti,et al.  Legionella waterline colonization: detection of Legionella species in domestic, hotel and hospital hot water systems , 2005, Journal of applied microbiology.

[36]  Jan Van Impe,et al.  Robust multi-objective optimal control of uncertain (bio)chemical processes , 2011 .

[37]  V. I. Ugursal,et al.  Residential cogeneration systems: Review of the current technology , 2006 .

[38]  Darinka Dentcheva,et al.  Optimization with multivariate stochastic dominance constraints , 2008, SIAM J. Optim..

[39]  Victor M. Zavala,et al.  Nonlinear programming strategies on high-performance computers , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[40]  Francesco Melino,et al.  Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications , 2012 .

[41]  André Bardow,et al.  Multi-objective synthesis of energy systems: Efficient identification of design trade-offs , 2017, Comput. Chem. Eng..

[42]  Darinka Dentcheva,et al.  Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..

[43]  Sami Kara,et al.  The optimal selection of on-site CHP systems through integrated sizing and operational strategy , 2014 .