Visible Light-Induced Sulfonylation/Arylation of Styrenes in a Double Radical Three-Component Photoredox Reaction.

Simultaneous sulfonylation/arylation of styrene derivatives is achieved in a photoredox-catalyzed three-component reaction using visible light. A broad variety of difunctionalized products is accessible in mostly excellent yields and high diastereoselectivity. The developed reaction is scalable and suitable for the modification of styrene-functionalized biomolecules. Mechanistic investigations suggest the transformation to be operating through a designed sequence of radical formation and radical combination.

[1]  Shengqing Zhu,et al.  Intermolecular, redox-neutral azidoarylation of alkenes via photoredox catalysis. , 2019, Chemical communications.

[2]  F. Wang,et al.  Photoredox-catalyzed branch-selective pyridylation of alkenes for the expedient synthesis of Triprolidine , 2019, Nature Communications.

[3]  Felix J R Klauck,et al.  Visible-Light-Mediated Deaminative Three-Component Dicarbofunctionalization of Styrenes with Benzylic Radicals , 2018, ACS Catalysis.

[4]  Ren‐Jie Song,et al.  Alkylamination of Styrenes with Alkyl N-Hydroxyphthalimide Esters and Amines by B(C6H5)3-Facilitated Photoredox Catalysis. , 2018, Organic letters.

[5]  Shengqing Zhu,et al.  Metal-free, intermolecular carbopyridylation of alkenes via visible-light-induced reductive radical coupling† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc03493a , 2018, Chemical science.

[6]  Yajun Li,et al.  Merging Visible-Light Photocatalysis and Transition-Metal Catalysis in Three-Component Alkyl-Fluorination of Olefins with a Fluoride Ion. , 2018, Organic letters.

[7]  L. Reguera,et al.  Multicomponent Reactions in Ligation and Bioconjugation Chemistry. , 2018, Accounts of chemical research.

[8]  T. Jamison,et al.  Direct β-Selective Hydrocarboxylation of Styrenes with CO2 Enabled by Continuous Flow Photoredox Catalysis. , 2017, Journal of the American Chemical Society.

[9]  T. Opatz,et al.  Sunflow: Sunlight Drives Fast and Green Photochemical Flow Reactions in Simple Microcapillary Reactors - Application to Photoredox and H-Atom-Transfer Chemistry , 2017 .

[10]  T. Opatz,et al.  Light-Induced Alkylation of (Hetero)aromatic Nitriles in a Transition-Metal-Free C-C-Bond Metathesis. , 2017, Organic letters.

[11]  A. Gonçalves,et al.  Fluorinated Sulfilimino Iminiums: Efficient and Versatile Sources of Perfluoroalkyl Radicals under Photoredox Catalysis. , 2017, Angewandte Chemie.

[12]  F. Glorius,et al.  Mehrkomponenten‐Oxyalkylierung von Styrolen durch Wasserstoffbrücken‐unterstützten photoinduzierten Elektronentransfer , 2017 .

[13]  F. Glorius,et al.  Multicomponent Oxyalkylation of Styrenes Enabled by Hydrogen-Bond-Assisted Photoinduced Electron Transfer. , 2017, Angewandte Chemie.

[14]  Andrea Basso,et al.  Photoinduced Multicomponent Reactions. , 2016, Angewandte Chemie.

[15]  D. Hall,et al.  Multicomponent Hetero-[4 + 2] Cycloaddition/Allylboration Reaction: From Natural Product Synthesis to Drug Discovery. , 2016, Accounts of chemical research.

[16]  M. Akita,et al.  A versatile strategy for difunctionalization of carbon–carbon multiple bonds by photoredox catalysis , 2016 .

[17]  T. Opatz,et al.  Transition-Metal-Free Decarboxylative Photoredox Coupling of Carboxylic Acids and Alcohols with Aromatic Nitriles. , 2016, The Journal of organic chemistry.

[18]  M. Li,et al.  1,2-Alkylarylation of Styrenes with α-Carbonyl Alkyl Bromides and Indoles Using Visible-Light Catalysis. , 2016, The Journal of organic chemistry.

[19]  G. Masson,et al.  Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism. , 2016, The Journal of organic chemistry.

[20]  B. König,et al.  Eosin Y (EY) Photoredox-Catalyzed Sulfonylation of Alkenes: Scope and Mechanism. , 2016, Chemistry.

[21]  David A. Nicewicz,et al.  Organic Photoredox Catalysis. , 2016, Chemical reviews.

[22]  F. Qing,et al.  Visible-Light-Induced Hydrodifluoromethylation of Alkenes with a Bromodifluoromethylphosphonium Bromide. , 2016, Angewandte Chemie.

[23]  Ariel M. Sarotti,et al.  Beyond DP4: an Improved Probability for the Stereochemical Assignment of Isomeric Compounds using Quantum Chemical Calculations of NMR Shifts. , 2015, The Journal of organic chemistry.

[24]  Ji‐Chang Xiao,et al.  2,2,2-Trifluoroethylation of Styrenes with Concomitant Introduction of a Hydroxyl Group from Molecular Oxygen by Photoredox Catalysis Activated by Visible Light. , 2015, Organic letters.

[25]  G. Masson,et al.  Three-Component Photoredox-Mediated Chloro-, Bromo-, or Iodotrifluoromethylation of Alkenes , 2015, Synthesis.

[26]  Durga Prasad Hari,et al.  Visible Light‐Mediated Metal‐Free Synthesis of Vinyl Sulfones from Aryl Sulfinates , 2015 .

[27]  B. König,et al.  Intermolecular Formyloxyarylation of Alkenes by Photoredox Meerwein Reaction , 2015 .

[28]  C. Cai,et al.  Visible-light-mediated oxidative arylation of vinylarenes under aerobic conditions , 2015 .

[29]  P. Das,et al.  Quenching of diphenylmethyl radical fluorescence by cyanoaromatics and phenols , 2015, Research on Chemical Intermediates.

[30]  B. A. Neto,et al.  What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs , 2014 .

[31]  G. Masson,et al.  One pot and selective intermolecular aryl- and heteroaryl-trifluoromethylation of alkenes by photoredox catalysis. , 2014, Chemical communications.

[32]  T. Opatz,et al.  Radical Addition to Iminium Ions and Cationic Heterocycles , 2014, Molecules.

[33]  G. Masson,et al.  Photoredox-induced three-component azido- and aminotrifluoromethylation of alkenes. , 2014, Organic letters.

[34]  A. Dömling,et al.  Modern Multicomponent Reactions for better Drug Syntheses** , 2014, Organic chemistry frontiers : an international journal of organic chemistry.

[35]  M. Akita,et al.  Combining photoredox-catalyzed trifluoromethylation and oxidation with DMSO: facile synthesis of α-trifluoromethylated ketones from aromatic alkenes. , 2014, Angewandte Chemie.

[36]  Eelco Ruijter,et al.  Multicomponent reactions: advanced tools for sustainable organic synthesis , 2014 .

[37]  D. MacMillan,et al.  A general strategy for organocatalytic activation of C-H bonds via photoredox catalysis: direct arylation of benzylic ethers. , 2014, Journal of the American Chemical Society.

[38]  B. König,et al.  Die photoredoxkatalysierte Meerwein-Addition: intermolekulare Aminoarylierung von Alkenen† , 2014 .

[39]  Durga Prasad Hari,et al.  The photoredox-catalyzed Meerwein addition reaction: intermolecular amino-arylation of alkenes. , 2014, Angewandte Chemie.

[40]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[41]  David A. Nicewicz,et al.  Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system , 2013 .

[42]  M. Akita,et al.  Three-component oxytrifluoromethylation of alkenes: highly efficient and regioselective difunctionalization of C=C bonds mediated by photoredox catalysts. , 2012, Angewandte Chemie.

[43]  R. Orru,et al.  Recent developments in asymmetric multicomponent reactions. , 2012, Chemical Society reviews.

[44]  Stephen F. Martin,et al.  Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. , 2009, Chemistry.

[45]  A. Studer,et al.  The persistent radical effect in organic synthesis. , 2001, Chemistry.

[46]  A. N. Frolov MECHANISM OF CYANO GROUP PHOTOSUBSTITUTION IN AROMATIC COMPOUNDS , 1998 .

[47]  P. Djurovich,et al.  A new synthetic route to the preparation of a series of strong photoreducing agents: fac-tris-ortho-metalated complexes of iridium(III) with substituted 2-phenylpyridines , 1991 .

[48]  K. Nakanishi,et al.  Photosubstitution of Dicyanobenzenes by Group 14 Organometallic Compounds via Photoinduced Electron-Transfer. Additive and Medium Effects on Photoinduced Electron Transfer Reaction , 1988 .