Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach

[1]  Ö. Civalek,et al.  Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods , 2018 .

[2]  A. Norouzzadeh,et al.  Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity , 2017 .

[3]  Ömer Civalek,et al.  Discrete singular convolution method for the free vibration analysis of rotating shells with different material properties , 2017 .

[4]  Allan Donner,et al.  A Paradox Resolved , 2017 .

[5]  R. Ansari,et al.  Numerical study on the free vibration of carbon nanocones resting on elastic foundation using nonlocal shell model , 2016 .

[6]  Reza Ansari,et al.  Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis , 2016 .

[7]  R. Ansari,et al.  Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect , 2016 .

[8]  C. Ru A strain-consistent elastic plate model with surface elasticity , 2016 .

[9]  S. Dastjerdi,et al.  Nonlinear bending analysis of bilayer orthotropic graphene sheets resting on Winkler–Pasternak elastic foundation based on non-local continuum mechanics , 2016 .

[10]  R. Ansari,et al.  Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity , 2016 .

[11]  J. N. Reddy,et al.  Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved , 2016 .

[12]  R. Ansari,et al.  Geometrically nonlinear free vibration and instability of fluid-conveying nanoscale pipes including surface stress effects , 2016, Microfluidics and Nanofluidics.

[13]  M. Shaat,et al.  Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications , 2015 .

[14]  J. N. Reddy,et al.  A unified integro-differential nonlocal model , 2015 .

[15]  R. Ansari,et al.  A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions , 2015 .

[16]  Reza Ansari,et al.  Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory , 2015 .

[17]  Hassan Kananipour Static analysis of nanoplates based on the nonlocal Kirchhoff and Mindlin plate theories using DQM , 2014 .

[18]  Le-le Zhang,et al.  Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates , 2014 .

[19]  C. Wang,et al.  On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach , 2014, Archive of Applied Mechanics.

[20]  Q. Han,et al.  Prediction of the nonlocal scaling parameter for graphene sheet , 2014 .

[21]  Hui‐Shen Shen,et al.  Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity , 2013 .

[22]  G. Liaghat,et al.  Low velocity impact of a nanoparticle on nanobeams by using a nonlocal elasticity model and explicit finite element modeling , 2013 .

[23]  K. Kiani Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluids flow using nonlocal Rayleigh beam model , 2013 .

[24]  H. Rouhi,et al.  Thermal Buckling Analysis of Multi-Walled Carbon Nanotubes Through a Nonlocal Shell Theory Incorporating Interatomic Potentials , 2013 .

[25]  R. Ansari,et al.  Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory , 2013 .

[26]  M. Friswell,et al.  Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams , 2013 .

[27]  R. Ansari,et al.  NONLOCAL ANALYTICAL FLUGGE SHELL MODEL FOR AXIAL BUCKLING OF DOUBLE-WALLED CARBON NANOTUBES WITH DIFFERENT END CONDITIONS , 2012 .

[28]  T. Vo,et al.  A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams , 2012 .

[29]  Reza Ansari,et al.  Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics , 2011 .

[30]  Fu Xiaojin,et al.  Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .

[31]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[32]  K. Lazopoulos On bending of strain gradient elastic micro-plates , 2009 .

[33]  N. Challamel,et al.  A dispersive wave equation using nonlocal elasticity , 2009 .

[34]  George C. Tsiatas,et al.  A new Kirchhoff plate model based on a modified couple stress theory , 2009 .

[35]  C. Wang,et al.  The small length scale effect for a non-local cantilever beam: a paradox solved , 2008, Nanotechnology.

[36]  G. Kardomateas,et al.  Vibration Characteristics of Multiwalled Carbon Nanotubes Embedded in Elastic Media by a Nonlocal Elastic Shell Model , 2007 .

[37]  K. M. Liew,et al.  Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures , 2007 .

[38]  H. P. Lee,et al.  Thin plate theory including surface effects , 2006 .

[39]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[40]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[41]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[42]  P. Fuschi,et al.  Closed form solution for a nonlocal elastic bar in tension , 2003 .

[43]  Castrenze Polizzotto,et al.  Nonlocal elasticity and related variational principles , 2001 .

[44]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[45]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[46]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[47]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[48]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[49]  I. Kunin The Theory of Elastic Media with Microstructure and the Theory of Dislocations , 1968 .

[50]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[51]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[52]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[53]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .