Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska

[1] Atmospheric water vapor is a key parameter for the analysis of climatic systems (greenhouse gas effect), in particular over high latitudes where water vapor displays an important seasonal variability. The sparse spatial and temporal sampling of atmospheric water vapor observations across Canada needs to be improved. A series of instruments and methods including a 940-nm solar absorption band radiometer (R) and radiosonde (S) analysis from a numerical weather prediction model and a ground-based bi-frequency Global Positioning System (GPS) were used to evaluate the integrated atmospheric water vapor (IWV) at various sites in Canada and Alaska from a multiyear database. The IWV-R measurements were collected within the framework of the North American Sun Radiometry network (AERONET/AEROCAN). Intercomparisons between [IWV-GPS and IWV-S], [IWV-R and IWV-GPS], and [IWV-R and IWV-S] show root mean square (RMS) differences of 1.8, 1.9, and 2.2 kg m � 2 , respectively. GPS meteorology appears to be the easiest approach to calibrate the solar radiometer water vapor band owing to its flexibility, and it allows us to overcome the Sun radiometry limitation in high-latitude areas like the Arctic. The sensitivity of the GPS retrieval to various parameters like GPS satellite constellation and meteorological data are discussed. The classical linear relationship between the surface temperature and the integrated weighted mean temperature profile needed for IWV-GPS retrieval may be significantly different for Arctic air masses compared with midlatitude air masses in the case of tropospheric temperature profile inversion. An ever-expanding multiyear (1994–2001) North American summer water vapor climatology, derived from AERONET/Canadian Sun Radiometer Network, is presented and analyzed, showing a mean value of 19.8 ± 6.1 kg m � 2 and variations from 17 kg m � 2 in Alaska to 23 kg m � 2 in southeastern Canada. The results in Bonanza Creek, Alaska, show significant interannual variations with a peak in 1997, which may

[1]  M. Collins,et al.  Global change: The past and future of El Niño , 2003, Nature.

[2]  J. Kahl,et al.  A climatological data base of arctic water vapor characteristics 1 , 1994 .

[3]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[4]  P. Y. Georgiadou,et al.  On carrier signal multipath effects in relative GPS positioning , 1988 .

[5]  C. Reigber,et al.  Near Real-Time Water Vapor Monitoring in a German GPS Network and Assimilation into Weather Forecast Model , 2001 .

[6]  Jennifer S. Haase,et al.  Reducing satellite orbit error effects in near real‐time GPS zenith tropospheric delay estimation for meteorology , 2000 .

[7]  Seth I. Gutman,et al.  Developing an Operational, Surface-Based, GPS, Water Vapor Observing System for NOAA: Network Design and Results , 2000 .

[8]  B. Soden,et al.  WATER VAPOR FEEDBACK AND GLOBAL WARMING 1 , 2003 .

[9]  Merlinde Kay,et al.  Radiative effects of absorbing aerosols and the impact of water vapor , 2000 .

[10]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[11]  N. O'Neill,et al.  A North American Arctic Aerosol Climatology using Ground-based Sunphotometry , 2002 .

[12]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[13]  Lawrence P. Giver,et al.  Visible and near-infrared H216O line intensity corrections for HITRAN-96 , 2000 .

[14]  T. Iwabuchi,et al.  A comparison of Global Positioning System retrieved precipitable water vapor with the numerical weather prediction analysis data over the Japanese Islands , 2000 .

[15]  Gerd Gendt,et al.  A Discussion of IGS Solutions and Their Impact on Geodetic and Geophysical Applications , 1998, GPS Solutions.

[16]  William L. Smith,et al.  The Retrieval of Planetary Boundary Layer Structure Using Ground-Based Infrared Spectral Radiance Measurements , 1999 .

[17]  F. Wagner,et al.  Precipitable water evaluations from infrared sun‐photometric measurements analyzed using the atmospheric hygrometry technique , 2000 .

[18]  J. Blanchet,et al.  Water vapor-temperature feedback in the formation of continental Arctic air: its implication for climate , 1995 .

[19]  R. Hoff Vertical Structure of Arctic Haze Observed by Lidar , 1988 .

[20]  Jean-Pierre Blanchet,et al.  Arctic ‘greenhouse effect’ , 1994, Nature.

[21]  Soroosh Sorooshian,et al.  SuomiNet: A Real-Time National GPS Network for Atmospheric Research and Education. , 2000 .

[22]  J. Garrison,et al.  Estimation of precipitable water over the United States for application to the division of solar radiation into its direct and diffuse components , 1990 .

[23]  Steven Businger,et al.  Estimating wet delays using numerical weather analyses and predictions , 1996 .

[24]  M. Hoerling,et al.  Why do North American climate anomalies differ from one El Niño event to another? , 1997 .

[25]  Stanley G. Benjamin,et al.  The Role of Ground-Based GPS Meteorological Observations in Numerical Weather Prediction , 2001, GPS Solutions.

[26]  Y. Liou,et al.  Precipitable water observed by ground-based GPS receivers and microwave radiometry , 2000 .

[27]  Charles G. Wade,et al.  An Evaluation of Problems Affecting the Measurement of Low Relative Humidity on the United States Radiosonde , 1994 .

[28]  Alexander E. MacDonald,et al.  Diagnosis of Three-Dimensional Water Vapor Using a GPS Network , 2002 .

[29]  Gunnar Elgered,et al.  A Comparison of Precipitable Water Vapor Estimates by an NWP Simulation and GPS Observations , 1999 .

[30]  Willy Bertiger,et al.  Results of an Internet-Based Dual-Frequency Global Differential GPS System , 2000 .

[31]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[32]  Ying-Hwa Kuo,et al.  Assimilation of Precipitable Water Measurements into a Mesoscale Numerical Model , 1993 .

[33]  Jacques Gilbert,et al.  Atmospheric remote sensing with a ground-based spectrometer system , 1996, Defense, Security, and Sensing.

[34]  Christian Rocken,et al.  Improving GPS surveying with modeled ionospheric corrections , 2000 .

[35]  Y. Bock,et al.  Global Positioning System Network analysis with phase ambiguity resolution applied to crustal deformation studies in California , 1989 .

[36]  Steven Businger,et al.  Sensing atmospheric water vapor with the global positioning system , 1993 .

[37]  Bo G Leckner,et al.  The spectral distribution of solar radiation at the earth's surface—elements of a model , 1978 .

[38]  P. Collins,et al.  Strategies for estimating tropospheric delays with GPS , 2002, 2002 IEEE Position Location and Navigation Symposium (IEEE Cat. No.02CH37284).

[39]  Isao Naito,et al.  Comparisons of GPS‐derived precipitable water vapors with radiosonde observations in Japan , 2000 .

[40]  C. Prabhakara,et al.  El Niño and Atmospheric Water Vapor: Observations from Nimbus 7 SMMR , 1985 .

[41]  S. Philander,et al.  Interdecadal Climate Fluctuations That Depend on Exchanges Between the Tropics and Extratropics , 1997, Science.

[42]  Ed R. Westwater,et al.  The accuracy of water vapor and cloud liquid determination by dual‐frequency ground‐based microwave radiometry , 1978 .

[43]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[44]  M. Latif,et al.  Greenhouse Warming, Decadal Variability, or El Niño? An Attempt to Understand the Anomalous 1990s , 1997 .

[45]  H. Kahle,et al.  Tropospheric water vapor derived from solar spectrometer, radiometer, and GPS measurements , 1997 .

[46]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[47]  Waldemar Kunysz A Novel GPS Survey Antenna , 2000 .

[48]  Niklaus Kämpfer,et al.  Weighted mean tropospheric temperature and transmittance determination at millimeter‐wave frequencies for ground‐based applications , 1998 .

[49]  Alan Dodson,et al.  Ground-based GPS water vapour estimation: potential for meteorological forecasting , 2001 .

[50]  J. Barnard,et al.  Comparison of columnar water-vapor measurements from solar transmittance methods. , 2001, Applied optics.

[51]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[52]  C. Gueymard Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States , 1994 .

[53]  Gerhard Beutler,et al.  The International GPS Service: A Global Resource for GPS Applications and Research , 1997 .

[54]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[55]  Peter J. Webster,et al.  The past and the future of El Niño , 1997, Nature.

[56]  Beat Schmid,et al.  Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94‐μm region , 1996 .

[57]  Pat Fenton,et al.  Theory and Performance of Narrow Correlator Spacing in a GPS Receiver , 1992 .

[58]  Gunnar Elgered,et al.  Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay , 1991 .

[59]  H. Banerjee The role of τγ5-gauge invariance in a nonlinear model of elementary particles , 1962 .

[60]  P. Watson,et al.  Comparison of integrated precipitable water vapour obtained by GPS and radiosondes , 1998 .

[61]  William L. Smith,et al.  Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) , 1998 .

[62]  David N. Whiteman,et al.  Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar , 1992 .

[63]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.

[64]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[65]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[66]  Ying-Hwa Kuo,et al.  Variational Assimilation of Precipitable Water Using a Nonhydrostatic Mesoscale Adjoint Model. Part I: Moisture Retrieval and Sensitivity Experiments , 1996 .

[67]  Susan L. Ustin,et al.  Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data , 1993 .

[68]  W. Elliott,et al.  On the Utility of Radiosonde Humidity Archives for climate studies , 1991 .

[69]  Pierre Héroux,et al.  Precise Point Positioning Using IGS Orbit and Clock Products , 2001, GPS Solutions.

[70]  J. Curry,et al.  Water vapor feedback over the Arctic Ocean , 1995 .

[71]  Paul Tregoning,et al.  Accuracy of absolute precipitable water vapor estimates from GPS observations , 1998 .

[72]  Brian L. Markham,et al.  Atmospheric aerosol and water vapor characteristics over north central Canada during BOREAS , 1997 .

[73]  Ed R. Westwater,et al.  A Steerable Dual-Channel Microwave Radiometer for Measurement of Water Vapor and Liquid in the Troposphere , 1983 .

[74]  J. B. Snider,et al.  Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 GHz: a comparison of measurements and theory , 1990 .

[75]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[76]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results , 1998 .

[77]  G. Fedosejevs,et al.  Characterization of atmospheric aerosols across Canada from a ground‐based sunphotometer network: AEROCAN , 2001 .

[78]  T. Eck,et al.  Sun photometric measurements of atmospheric water vapor column abundance in the 940‐nm band , 1997 .

[79]  Borys Stoew,et al.  GPS observations of daily variations in the atmospheric water vapor content , 2001 .

[80]  Effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycle , 2000 .