Scalable repeater architectures for multi-party states

The vision to develop quantum networks entails multi-user applications, which require the generation of long-distance multi-party entangled states. The current rapid experimental progress in building prototype-networks calls for new design concepts to guide future developments. Here we describe an experimentally feasible scheme implementing a two-dimensional repeater network for robust distribution of three-party entangled states of GHZ type in the presence of excitation losses and detector dark counts — the main sources of errors in real-world hardware. Our approach is based on atomic or solid state ensembles and employs built-in error filtering mechanisms peculiar to intrinsically two-dimensional networks. This allows us to overcome the performance limitation of conventional one-dimensional ensemble-based networks distributing multi-party entangled states and provides an efficient design for future experiments with a clear perspective in terms of scalability.

[1]  M. Lein Mechanisms of ultrahigh-order harmonic generation , 2005 .

[2]  T. Chaneliere,et al.  Highly multimode storage in a crystal , 2011 .

[3]  V. Buzek,et al.  Towards quantum-based privacy and voting , 2005, quant-ph/0505041.

[4]  Zachary Eldredge,et al.  Distributed Quantum Metrology with Linear Networks and Separable Inputs. , 2018, Physical review letters.

[5]  Hood,et al.  The atom-cavity microscope: single atoms bound in orbit by single photons , 2000, Science.

[6]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[7]  Axel Kuhn,et al.  Single-photon absorption in coupled atom-cavity systems , 2011, 1105.1699.

[8]  Michael Epping,et al.  Large-scale quantum networks based on graphs , 2015, 1504.06599.

[9]  Alexey V. Gorshkov,et al.  Photon storage in Λ -type optically dense atomic media. I. Cavity model , 2006, quant-ph/0612082.

[10]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[11]  Anirban Pathak,et al.  Protocols for quantum binary voting , 2017 .

[12]  Siddhartha Santra,et al.  Quantum repeater architecture with hierarchically optimized memory buffer times , 2018, Quantum Science and Technology.

[13]  A. Harrow,et al.  Efficient distributed quantum computing , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[15]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[16]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[17]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[18]  K. Jacobs,et al.  Distributed Quantum Metrology with Linear Networks and Separable Inputs. , 2017, Physical review letters.

[19]  Zachary Eldredge,et al.  Optimal and secure measurement protocols for quantum sensor networks. , 2016, Physical review. A.

[20]  D. Jaksch,et al.  Entangling Macroscopic Diamonds at Room Temperature , 2011, Science.

[21]  Jian-Wei Pan,et al.  Experimental demonstration of a BDCZ quantum repeater node , 2008, Nature.

[22]  W. Dur,et al.  Two-dimensional quantum repeaters , 2016, 1604.05352.

[23]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[24]  Christoph Simon,et al.  Robust and efficient quantum repeaters with atomic ensembles and linear optics , 2008, 0802.1475.

[25]  Jonathan Simon,et al.  Interfacing collective atomic excitations and single photons. , 2007, Physical review letters.

[26]  Peter C. Humphreys,et al.  Multiplexed entanglement generation over quantum networks using multi-qubit nodes , 2017, 1702.04885.

[27]  D. Stamper-Kurn,et al.  Cavity nonlinear optics at low photon numbers from collective atomic motion. , 2007, Physical review letters.

[28]  H. Weinfurter,et al.  Heralded Entanglement Between Widely Separated Atoms , 2012, Science.

[29]  S. Yelin,et al.  How to trap photons? Storing single-photon quantum states in collective atomic excitations , 1999, quant-ph/9912022.

[30]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[31]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[32]  Alexey V. Gorshkov,et al.  Photon storage in Λ -type optically dense atomic media. II. Free-space model , 2007 .

[33]  Heng Shen,et al.  Deterministic quantum teleportation between distant atomic objects , 2012, Nature Physics.

[34]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[35]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[36]  N. Gisin,et al.  Phase-noise measurements in long-fiber interferometers for quantum-repeater applications , 2007, 0712.0740.

[37]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[38]  H. Kimble,et al.  Measurement induced entanglement for excitation stored in remote atomic ensembles , 2006, QELS 2006.

[39]  Andrea Klug,et al.  Bells Theorem Quantum Theory And Conceptions Of The Universe , 2016 .

[40]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[41]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[42]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[43]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[44]  K. N. Tolazzi,et al.  Two-Photon Blockade in an Atom-Driven Cavity QED System. , 2016, Physical review letters.

[45]  E. Togan,et al.  Generation of heralded entanglement between distant hole spins , 2015, Nature Physics.

[46]  R. V. Meter,et al.  Optimizing Timing of High-Success-Probability Quantum Repeaters , 2017, 1701.04586.

[47]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[48]  R. Blatt,et al.  Quantum information transfer using photons , 2014, Nature Photonics.

[49]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[50]  Sumeet Khatri,et al.  Robust quantum network architectures and topologies for entanglement distribution , 2017, 1709.07404.

[51]  T. Aoki,et al.  Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity. , 2015, Physical review letters.

[52]  Hermann Kampermann,et al.  Finite-range multiplexing enhances quantum key distribution via quantum repeaters , 2014 .

[53]  Dagmar Bruß,et al.  Quantum Key Distribution: from Principles to Practicalities , 1999, Applicable Algebra in Engineering, Communication and Computing.

[54]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[55]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[56]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[57]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[58]  H. Riedmatten,et al.  Quantum Light Storage in Solid State Atomic Ensembles , 2015, 1502.00307.

[59]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[60]  Leandros Tassiulas,et al.  Routing entanglement in the quantum internet , 2017, npj Quantum Information.

[61]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[62]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[63]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[64]  B. Lanyon,et al.  Deterministic quantum state transfer between remote qubits in cavities , 2017, 1704.06233.

[65]  Yixian Yang,et al.  Multi-party quantum secret sharing with the single-particle quantum state to encode the information , 2013, Quantum Inf. Process..

[66]  P. Kwiat,et al.  Design and analysis of communication protocols for quantum repeater networks , 2015, 1505.01536.

[67]  N. Mermin Quantum mysteries revisited , 1990 .