Near-Infrared LEDs Based on Quantum Cutting-Activated Electroluminescence of Ytterbium Ions.

Cesium lead halide perovskite nanocrystals (PNCs) exhibit promising prospects for application in optoelectronic devices. However, electroactivated near-infrared (NIR) PNC light-emitting diodes (LEDs) with emission peaks over 800 nm have not been achieved. Herein, we demonstrate the electroactivated NIR PNC LEDs based on Yb3+-doped CsPb(Cl1-xBrx)3 PNCs with extraordinary high NIR photoluminescence quantum yields over 170%. The fabricated NIR LEDs possess an irradiance of 584.7 μW cm-2, an EQE of 1.2%, and a turn-on voltage of 3.1 V. The ultrafast quantum cutting process from the PNC host to Yb3+ has been revealed as the main mechanism of electroluminescence (EL)-activated Yb3+ for the first time via exploring how the trend between the EL intensity of PNC and Yb3+ varies with different voltages along with the tendency of temperature- and doping-concentration-dependent PL and EL spectra. This work will extend the application of PNCs to optical communication, night-vision devices, and biomedical imaging.

[1]  O. Voznyy,et al.  In Situ Inorganic Ligand Replenishment Enables Bandgap Stability in Mixed‐Halide Perovskite Quantum Dot Solids , 2022, Advanced materials.

[2]  Ping Huang,et al.  Ytterbium-Doped CsPbCl3 Quantum Cutters for Near-Infrared Light-Emitting Diodes. , 2021, ACS applied materials & interfaces.

[3]  Chun‐Sing Lee,et al.  Highly Efficient Sky-Blue Perovskite Light-Emitting Diode Via Suppressing Nonradiative Energy Loss , 2021, Chemistry of Materials.

[4]  R. Friend,et al.  Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes , 2021 .

[5]  Hongwei Song,et al.  Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70% , 2020 .

[6]  E. Kumacheva,et al.  Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots , 2020, Nature Nanotechnology.

[7]  Hongwei Song,et al.  Samarium-Doped Metal Halide Perovskite Nanocrystals for Single-Component Electroluminescent White Light-Emitting Diodes , 2020, ACS Energy Letters.

[8]  Xiaoyu Zhang,et al.  Molecule-Induced p-Doping in Perovskite Nanocrystals Enables Efficient Color-Saturated Red Light-Emitting Diodes. , 2020, Small.

[9]  S. Bals,et al.  Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects , 2020, Angewandte Chemie.

[10]  T. Miyasaka,et al.  Sensitized Yb3+ Luminescence in CsPbCl3 Film for Highly Efficient Near‐Infrared Light‐Emitting Diodes , 2020, Advanced science.

[11]  Byung Soon Kim,et al.  Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window , 2020, Nature Photonics.

[12]  M. Toney,et al.  Size-Dependent Lattice Structure and Confinement Properties in CsPbI3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization , 2019, ACS Energy Letters.

[13]  Hongwei Song,et al.  Impact of Host Composition, Co-doping or Tri-doping on Quantum Cutting Emission of Ytterbium in Halide Perovskite Quantum Dots and Solar Cells Applications. , 2019, Nano letters.

[14]  William W. Yu,et al.  Oxalic Acid Enabled Emission Enhancement and Continuous Extraction of Chloride from Cesium Lead Chloride/Bromide Perovskite Nanocrystals. , 2019, Small.

[15]  Apurba De,et al.  Highly Luminescent Violet- and Blue-Emitting Stable Perovskite Nanocrystals , 2019, ACS Materials Letters.

[16]  L. Manna,et al.  Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties , 2019, Chemical reviews.

[17]  William W. Yu,et al.  Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. , 2019, Nano letters.

[18]  Heesun Yang,et al.  Tunable Emission of Bluish Zn-Cu-Ga-S Quantum Dots by Mn Doping and Their Electroluminescence. , 2019, ACS applied materials & interfaces.

[19]  J. D. De Yoreo,et al.  Anion Exchange and the Quantum-Cutting Energy Threshold in Ytterbium-Doped CsPb(Cl1- xBr x)3 Perovskite Nanocrystals. , 2019, Nano letters.

[20]  Lin-Wang Wang,et al.  Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. , 2018, Journal of the American Chemical Society.

[21]  M. Jagadeeswararao,et al.  Postsynthesis Doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) Perovskite Nanocrystals for Downconversion Emission , 2018, Chemistry of Materials.

[22]  H. Zeng,et al.  Organic–Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48% , 2018, Advanced materials.

[23]  William W. Yu,et al.  PbS Capped CsPbI3 Nanocrystals for Efficient and Stable Light-Emitting Devices Using p–i–n Structures , 2018, ACS central science.

[24]  Dawei Di,et al.  The Physics of Light Emission in Halide Perovskite Devices , 2018, Advanced materials.

[25]  Zhongtao Ouyang,et al.  Near-infrared electroluminescence from atomic layer doped Al2O3:Yb nanolaminate films on silicon , 2018, Scripta Materialia.

[26]  Richard M. Maceiczyk,et al.  Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform , 2018, ACS nano.

[27]  D. Gamelin,et al.  Picosecond Quantum Cutting Generates Photoluminescence Quantum Yields Over 100% in Ytterbium-Doped CsPbCl3 Nanocrystals. , 2018, Nano letters.

[28]  Yitong Dong,et al.  Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. , 2018, Nano letters.

[29]  C. Shan,et al.  Localized Surface Plasmon Enhanced All‐Inorganic Perovskite Quantum Dot Light‐Emitting Diodes Based on Coaxial Core/Shell Heterojunction Architecture , 2018 .

[30]  Kai Ou,et al.  Effect of co-doped Tb3+ ions on electroluminescence of ZnO:Eu3+ LED , 2018, Journal of Materials Science: Materials in Electronics.

[31]  Yi Luo,et al.  Ce3+-Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes. , 2018, Journal of the American Chemical Society.

[32]  C. Shan,et al.  Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes. , 2018, ACS nano.

[33]  D. Chung,et al.  Phase Stabilized α‐CsPbI3 Perovskite Nanocrystals for Photodiode Applications , 2018 .

[34]  Wei Wei,et al.  Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb 3+ -doped silicate, tellurite, germanate, and phosphate glasses , 2018 .

[35]  Hongwei Song,et al.  Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. , 2017, Nano letters.

[36]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[37]  Hongwei Song,et al.  Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells , 2017, Advanced materials.

[38]  Xiuru Xu,et al.  Aluminum‐Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight , 2017, Advanced science.

[39]  Xiao Wei Sun,et al.  Halide-Rich Synthesized Cesium Lead Bromide Perovskite Nanocrystals for Light-Emitting Diodes with Improved Performance , 2017 .

[40]  M. Kovalenko,et al.  High‐Temperature Photoluminescence of CsPbX3 (X = Cl, Br, I) Nanocrystals , 2017 .

[41]  Sara Bals,et al.  Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange , 2017, Journal of the American Chemical Society.

[42]  Qingsong Shan,et al.  50‐Fold EQE Improvement up to 6.27% of Solution‐Processed All‐Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control , 2017, Advanced materials.

[43]  Hao Zhang,et al.  CsPbxMn1-xCl3 Perovskite Quantum Dots with High Mn Substitution Ratio. , 2017, ACS nano.

[44]  Wei Huang,et al.  Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. , 2017, Angewandte Chemie.

[45]  William W. Yu,et al.  Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. , 2016, The journal of physical chemistry letters.

[46]  Yitong Dong,et al.  Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals. , 2016, Nano letters.

[47]  P. Ghosh,et al.  Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. , 2016, Nano letters.

[48]  William W. Yu,et al.  Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. , 2016, Journal of the American Chemical Society.

[49]  Oleksandr Voznyy,et al.  Highly efficient quantum dot near-infrared light-emitting diodes , 2016, Nature Photonics.

[50]  Joris Lousteau,et al.  Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers , 2016 .

[51]  Yin Song,et al.  Structure‐Tuned Lead Halide Perovskite Nanocrystals , 2016, Advanced materials.

[52]  H. Zeng,et al.  Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) , 2015, Advanced materials.

[53]  Haizheng Zhong,et al.  Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. , 2015, ACS nano.

[54]  Long Men,et al.  Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. , 2015, ACS nano.

[55]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[56]  Yang Yang,et al.  Rare‐Earth Doped ZnO Films: A Material Platform to Realize Multicolor and Near‐Infrared Electroluminescence , 2014 .

[57]  S. Arunkumar,et al.  Concentration effect of Sm3+ ions in B2O3–PbO–PbF2–Bi2O3–ZnO glasses – Structural and luminescence investigations , 2013 .

[58]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[59]  H. Strunk,et al.  Rare earth luminescence: A way to overcome concentration quenching , 2012 .

[60]  A. Ajji,et al.  Morphology and size control of lead sulphide nanoparticles produced using methanolic lead acetate trihydrate–thiourea complex via different precipitation techniques , 2012 .

[61]  D. Gamelin,et al.  Electrochemically controlled auger quenching of Mn²+ photoluminescence in doped semiconductor nanocrystals. , 2011, ACS nano.

[62]  Moungi G Bawendi,et al.  Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. , 2010, Nano letters.

[63]  V. Bulović,et al.  Alternating current driven electroluminescence from ZnSe/ZnS:Mn/ZnS nanocrystals. , 2009, Nano letters.

[64]  S. Zhao,et al.  Influence of the electric characteristics of II–VI semiconductor material on the electroluminescence of lanthanide complex , 2006 .

[65]  M. Davolos,et al.  Low voltage electroluminescence of terbium- and thulium-doped zinc oxide films , 2006 .

[66]  K. Schanze,et al.  Near-Infrared Photo- and Electroluminescence of Alkoxy-Substituted Poly(p-phenylene) and Nonconjugated Polymer/Lanthanide Tetraphenylporphyrin Blends , 2004 .

[67]  Nasser N Peyghambarian,et al.  Energy and charge transfer in organic light-emitting diodes: A soluble quinacridone study , 1999 .