An ultrafast symmetry switch in a Weyl semimetal
暂无分享,去创建一个
Aaron M. Lindenberg | James Hone | Daniel Rhodes | Tony F. Heinz | Matthias C. Hoffmann | Stephen Weathersby | Xiaozhe Shen | Renkai Li | Su Ji Park | Jie Yang | Xijie Wang | Edbert J. Sie | L. Balicas | J. Hone | T. Heinz | C. Nyby | T. Devereaux | C. D. Pemmaraju | A. Lindenberg | Jie Yang | Xiaozhe Shen | Renkai Li | Xijie Wang | D. Rhodes | A. Reid | D. Chenet | M. Hoffmann | A. Antony | Luis Balicas | B. Ofori-Okai | S. Weathersby | E. Sie | Thomas P. Devereaux | Alexander H. Reid | Daniel Chenet | Clara M. Nyby | B. K. Ofori-Okai | Ehren Mannebach | Nathan Finney | Abhinandan Antony | Daniel A. Chenet | T. Heinz | E. Mannebach | N. Finney | M. Hoffmann | Mannebach Ehren | Clara Nyby | Abhinandan Antony | X. Shen
[1] S. Edstrom,et al. A terahertz pump mega-electron-volt ultrafast electron diffraction probe apparatus at the SLAC Accelerator Structure Test Area facility , 2018, Journal of Instrumentation.
[2] H. Alshareef,et al. Evidence for topological type-II Weyl semimetal WTe2 , 2017, Nature Communications.
[3] N. Takagi,et al. Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference. , 2017, ACS nano.
[4] M. C. Nguyen,et al. Elastic and electronic tuning of magnetoresistance in MoTe2 , 2017, Science Advances.
[5] W. Schmidt,et al. Optically excited structural transition in atomic wires on surfaces at the quantum limit , 2017, Nature.
[6] Renkai Li,et al. Femtosecond mega-electron-volt electron microdiffraction. , 2017, Ultramicroscopy.
[7] I. Hamada,et al. Origins of the structural phase transitions in MoTe 2 and WTe 2 , 2017, 1702.04509.
[8] D. Cahill,et al. Direct Synthesis of Large‐Scale WTe2 Thin Films with Low Thermal Conductivity , 2017 .
[9] Su-Yang Xu,et al. Weyl semimetals, Fermi arcs and chiral anomalies. , 2016, Nature materials.
[10] A. Burkov. Topological semimetals. , 2016, Nature materials.
[11] J. E. Moore,et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals , 2016, Nature Physics.
[12] Jun Yan,et al. Activation of New Raman Modes by Inversion Symmetry Breaking in Type II Weyl Semimetal Candidate T'-MoTe2. , 2016, Nano letters.
[13] Yan-Feng Chen,et al. Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe_{1.98} Crystals at the Quasiclassical Regime. , 2016, Physical review letters.
[14] A. Grushin,et al. Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels , 2016, 1607.04268.
[15] M. Franz,et al. Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals , 2016, 1607.01810.
[16] Ji Feng,et al. Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2 , 2016, Nature Communications.
[17] T. Morimoto,et al. Topological nature of nonlinear optical effects in solids , 2015, Science Advances.
[18] Y. Ferreirós,et al. Elastic Gauge Fields in Weyl Semimetals. , 2015, Physical review letters.
[19] Zhongkai Liu,et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.
[20] R. Coffee,et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. , 2015, The Review of scientific instruments.
[21] M. Troyer,et al. Type-II Weyl semimetals , 2015, Nature.
[22] I. Tanaka,et al. First principles phonon calculations in materials science , 2015, 1506.08498.
[23] R. Cava,et al. Optical properties of the perfectly compensated semimetal WTe 2 , 2015, 1506.02599.
[24] I. Hamada. Erratum: van der Waals density functional made accurate [Phys. Rev. B89, 121103(R) (2014)] , 2015 .
[25] Juan Liu,et al. Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2. , 2015, Physical review letters.
[26] Xianhui Chen. Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.
[27] Shuang Jia,et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.
[28] I. Zeljkovic,et al. Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films. , 2015, Nature nanotechnology.
[29] Junwei Liu,et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.
[30] Q. Gibson,et al. Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.
[31] M. Weinert,et al. Tuning Dirac states by strain in the topological insulator Bi2Se3 , 2014, Nature Physics.
[32] I. Hamada. van der Waals density functional made accurate , 2014 .
[33] Francisco Guinea,et al. Designer Dirac fermions and topological phases in molecular graphene , 2012, Nature.
[34] K. Sokolowski-Tinten,et al. Picosecond acoustic response of a laser-heated gold-film studied with time-resolved x-ray diffraction , 2011 .
[35] Stefan Grimme,et al. Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..
[36] A. Zettl,et al. Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.
[37] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[38] M Zahid Hasan,et al. Topological Insulators , 2010, 1002.3895.
[39] P. Roushan,et al. Topological surface states protected from backscattering by chiral spin texture , 2009, Nature.
[40] J. Chu,et al. STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. , 2009, Physical review letters.
[41] P. Günter,et al. A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection. , 2008, Optics express.
[42] Zhou Yang,et al. Large‐Size Bulk and Thin‐Film Stilbazolium‐Salt Single Crystals for Nonlinear Optics and THz Generation , 2007 .
[43] Marc De Graef,et al. Introduction to Conventional Transmission Electron Microscopy: Defects in crystals , 2003 .
[44] P. Coppens,et al. Relativistic X‐ray elastic scattering factors for neutral atoms Z = 1–54 from multiconfiguration Dirac–Fock wavefunctions in the 0–12Å−1 sin,θ/λ range, and six‐Gaussian analytical expressions in the 0–6Å−1 range. Erratum , 1997 .
[45] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[46] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[47] A. Kirfel,et al. New analytical scattering‐factor functions for free atoms and ions , 1995 .
[48] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[49] A. Mar,et al. Metal-metal vs tellurium-tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4 , 1992 .
[50] Joseph Callaway,et al. Inhomogeneous Electron Gas , 1973 .
[51] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .