Thermodynamic modeling of the Ni–Al–Ga–N system

Isothermal sections in the Ni–Al–Ga–N quaternary phase diagram were calculated to provide a greater understanding of interfacial reactions between Ni contacts and Al_ x Ga_1−_ x N. The calculations were performed employing a thermodynamic database of the Ni–Al–Ga–N system that was constructed by combining the six binary systems of the four component system. The model of the Ga–N binary system was created in this work. The models of the Ni–Ga and Ni–Al systems, both of which were taken from the literature, were modified to be compatible with one another. Thermodynamic data and phase boundaries for other binary systems were taken from the literature, as was information on portions of the Al–Ga–N and Ni–Al–Ga phase diagrams. The calculated sections reveal that during reaction between Ni and Al_ x Ga_1−_ x N, Ni is favored to react with the GaN component of the semiconductor alloy, leaving an Al-enriched Al_ x Ga_1−_ x N. These predictions are consistent with a recent analysis of the Ni, Al, and Ga elemental distributions across the interface between a Ni thin film and an Al_0.47Ga_0.53N epitaxial layer following annealing at 850 °C. Consideration of the thermodynamic driving forces suggests that this may be a general phenomenon existing in other metal–Al–Ga–N systems.

[1]  R. Dupuis,et al.  Compositional shift in AlxGa1−xN beneath annealed metal contacts , 2004 .

[2]  A. Davydov,et al.  Thermodynamics and Phase Stability in the Ga–N System , 2003 .

[3]  I. Adesida,et al.  Characterisation of iridium Schottky contacts on n-AlxGa1−xN , 2003 .

[4]  Martin Kuball,et al.  Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy , 2003 .

[5]  F. D. Auret,et al.  Thermal stability of rhenium Schottky contacts on n-type AlxGa1−xN , 2002 .

[6]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[7]  H. Hirayama,et al.  Effect of Thermal Annealing on the Pd/Au Contact to P-Type Al0.15Ga0.85N , 2002 .

[8]  W. Boettinger,et al.  Thermodynamic Assessment of the Gallium–Nitrogen System , 2001 .

[9]  J. A. del Alamo,et al.  An insulator-lined silicon substrate-via technology with high aspect ratio , 2001 .

[10]  J. Harris,et al.  Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model , 2001 .

[11]  Daniel S. Green,et al.  Gallium nitride based transistors , 2001 .

[12]  S. Mohney,et al.  Environmental aging of Schottky contacts to n-AlGaN , 2001 .

[13]  E. Kalinina,et al.  Mechanism of the current flow in Pd-(heavily doped p-AlxGa1−xN) ohmic contact , 2001 .

[14]  T. Egawa,et al.  Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire , 2001 .

[15]  S. Mohney,et al.  Phase equilibria in transition metal Al-Ga-N systems and thermal stability of contacts to AlGaN , 2001 .

[16]  Umesh K. Mishra,et al.  Very-high power density AlGaN/GaN HEMTs , 2001 .

[17]  M. Umeno,et al.  Effects of annealing on Ti, Pd, and Ni/n-Al/sub 0.11/Ga/sub 0.89/N Schottky diodes , 2001 .

[18]  S. Risbud,et al.  Enthalpy of Formation of Gallium Nitride , 2000 .

[19]  G. Fischer,et al.  Thermodynamic calculation of the binary systems M-Ga and investigation of ternary M-Ga-N phase equilibria (M = Ni, Co, Pd, Cr) , 1999 .

[20]  Y. Chang,et al.  Thermodynamic properties of the Ni–Al–Cr system , 1999 .

[21]  A. Rebey,et al.  In situ optical monitoring of the decomposition of GaN thin films , 1999 .

[22]  T. Xu,et al.  Structure and Heat Capacity of Wurtzite GaN from 113 to 1073 K , 1999 .

[23]  A. Pisch,et al.  In situ decomposition study of GaN thin films , 1998 .

[24]  O. J. Kleppa,et al.  Determination of the standard enthalpies of formation of Pd2Ga and PdGa by high-temperature direct synthesis calorimetry , 1997 .

[25]  I. Ansara,et al.  Thermodynamic assessment of the AlNi system , 1997 .

[26]  S. Mohney,et al.  Estimated phase equilibria in the transition metal-Ga-N systems: Consequences for electrical contacts to GaN , 1996 .

[27]  I. Ansara,et al.  A binary database for III–V compound semiconductor systems , 1994 .

[28]  Takashi Mukai,et al.  High‐power InGaN/GaN double‐heterostructure violet light emitting diodes , 1993 .

[29]  O. J. Kleppa,et al.  Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry , 1993 .

[30]  K. Frisk,et al.  Thermodynamic properties of ni nitrides and phase stability in the Ni-N system , 1991 .

[31]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[32]  G. Jacob,et al.  Study on the influence of annealing effects in GaN VPE , 1983 .

[33]  S. Martosudirjo,et al.  Enthalpies of formation of solid nickel-gallium and nickel-germanium alloys , 1976 .

[34]  R. Madar,et al.  Optimized growth conditions and properties of N-type and insulating GaN , 1976 .

[35]  R. Madar,et al.  High pressure solution growth of GaN , 1975 .

[36]  B. Predel,et al.  Thermodynamische untersuchung der systeme eisen—gallium und kobalt—gallium , 1975 .

[37]  Y. Morimoto Few Characteristics of Epitaxial GaN — Etching and Thermal Decomposition , 1974 .

[38]  B. Predel,et al.  Bildungsenthalpien binärer verbindungen des galliums mit kupfer, silber und gold sowie analyse der thermodynamischen eigenschaften von 32-elektronen-verbindungen , 1972 .

[39]  B. Predel,et al.  Thermodynamische untersuchung der systeme aluminium-antimon und aluminium-gold , 1970 .

[40]  W. B. Pearson,et al.  THE CONSTITUTION OF NICKEL–GALLIUM ALLOYS IN THE REGION 0–35 ATOMIC % GALLIUM , 1957 .

[41]  J. Margrave,et al.  Gaseous Metal Nitrides. II. The Vapor pressure Of GaN(S) And Evidence For A Complex Gaseous Nitride , 1956 .

[42]  R. Juza,et al.  Untersuchungen über die Nitride von Cadmium, Gallium, Indium und Germanium. Metallamide und Metallnitride. VIII. Mitteilung , 1940 .

[43]  D. Look,et al.  GaN and related alloys—2001 , 2002 .

[44]  J. Harris,et al.  Analysis of phase-separation region in wurtzite group III nitride quaternary material system using modified valence force field model , 2001 .

[45]  Y. Chang,et al.  A thermodynamic analysis of the Ni?Al system , 1998 .

[46]  Philip Nash,et al.  Phase diagrams of binary nickel alloys , 1991 .

[47]  I. Barin Thermochemical data of pure substances , 1989 .

[48]  J. Karpinski,et al.  High pressure thermodynamics of GaN , 1984 .

[49]  I. Katayama,et al.  Thermodynamic Study of Solid Ni-Ga Alloys by E.M.F. Measurements Using Solid Electrolyte Cells , 1974 .

[50]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[51]  M. Hillert,et al.  The Regular Solution Model for Stoichiometric Phases and Ionic Melts. , 1970 .

[52]  M. Lorenz,et al.  Preparation, Stability, and Luminescence of Gallium Nitride , 1962 .

[53]  D D Wagman,et al.  Selected values of chemical thermodynamic properties , 1952 .